

General Description

This single 2-input positive-AND gate is designed for 1.65-V to 5.5-V Vcc operation.

The HSN74LVC1G08 performs the Boolean function $Y=A \cdot B$ or $Y=\overline{A}+\overline{B}$ in positive logic.

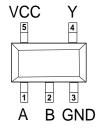
The CMOS device has high output drive while maintaining low static power dissipatior over a broad Vcc operating range.

This device is fully specified for partial-power-down applications using loff.

The loff circuitry disables the outputs, preventing damaging current backfow through the device when it is powered down.

Features

- Supports 5V VCC operation
- Inputs accept voltages to 5.5 V
- Provides down translation to VCC
- Low power consumption,10-µA Max ICC
- ±24-mA outputdrive at 3.3 V
- loff supports live insertion,partial -power -down mode, and back drive protection


Applications

- Active noise cancellation(ANC)
- Barcode scanner
- Blood pressuremonitor
- CPAP machine
- Fingerprint biometrics
- HVAC:heating,ventilating,and air conditioning
- Network-attached storage(NAS)
- Server motherboard and PSU
- Software defined radio(SDR)
- Video communications system

Functional Block Diagram

Pinning and Pin Functions

SOT-23-5L/SO-70-5

F	Pin	Type	Description
Name	SOT-23-5L/SO-70-5	Туре	Description
Α	1	l	Data Input
В	2	I	Data Input
GND	3	_	Ground
Υ	4	0	Data Output
Vcc	5	-	Supply Voltage

Absolute Maximum Ratings

	Parameter	rs	Min	Max.	Unit
Vcc	Supply volt	age range	-0.5	6.5	V
Vı	Input volta	ige range	-0.5	6.5	V
Vo	Voltage range applied to any output in	-0.5	6.5	V	
Vo	Voltage range applied to any	-0.5	Vcc+0.5	V	
Iĸ	Input clamp current	V<0		-50	mA
Іок	Output clamp current	V ₀ <0		-50	mA
lo	Continuous o	utput current		±50	mA
	Continuous current throu	ıgh Vcc or GND		±100	mA
TJ	Junction tempera		150	°C	
T _{stg}	Storage temp	erature range	-65	150	°C

⁽¹⁾ Stresses beyond those listed under Absolute Maximum Ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods may affect device reliability.

Recommended Operating Conditions

Over operating free-air temperature range (unless otherwise noted)

Symbol	Paran	Parameter		Max	Unit	
Vcc	Supply \	/oltage	1.65	5.5	V	
		VCC=1.65V to1.95V	0.65×VCC			
\ <i>I</i>	Link Lovelloov AVallana	VCC=2.3V to 2.7V	1.7			
$V_{\mathbb{H}}$	High-Level Input Voltage	VCC=3V to 3.6V	2		V	
		VCC=4.5V to 5.5V	0.7×VCC			
		VCC=1.65V to1.95V		0.35×VCC		
VL	Law Lavel Imput Voltage	VCC=2.3V to 2.7V		0.7	V	
VL	Low-Level Input Voltage	VCC=3V to 3.6V		0.8	\ \ \	
		VCC=4.5V to 5.5V		0.3×VCC		
Vı	Input V	oltage	0	5.5	V	
Vo	Output \	/oltage	0	VCC	V	
		VCC=1.65V		-4		
	High-Level Output Current	VCC=2.3V		-8	1	
Іон		V/CC-2V/		-16	mA	
		VCC=3V		-24		
		VCC=4.5V		-32	1	
		VCC=1.65V		4	mA	
		VCC=2.3V		8		
loL	Low-Level Output Current	VCC=3V		16		
		VCC=3V		24		
		VCC=4.5V		32		
		VCC=1.8V±0.15V,2.5V±0.2V		20		
Δt/Δν	Input Transition Rise or Fall Rate	VCC=3.3V±0.3V		10	ns/V	
		VCC=5V±0.5V		5		
TA	Operating Free-A	Air Temperature	-40	125	°C	

⁽²⁾ The input negative-voltage and output voltage ratings may be exceeded if the input and output current ratings are observed.

ESD Ratings

	E	Value	Unit	
V(ESD)	Clastrostatia Disabarra	Human-Body Model (HBM) ⁽¹⁾	8 K	V
	Electrostatic Discharge	Charged-Device Model (CDM)(2)	2 K	V

⁽¹⁾ JEDEC document JEP155 states that 500-V HBM allows safe manufacturing with a standard ESD control process.

Thermal Information

Package Type	Ө ЈА	0 JC	Unit
SOT-23-5L	250	81	°C/W
SC-70-5	400	150	°C/W

Electrical Characteristics

V_{CC}=1.65V to 5.5V, FULL=–40°C to +125°C. Typical values are at TA=+25°C (unless otherwise noted)

D	4	Test Conditions	v	-4	0°C to 85	i°C	-40)°C to 12	5°C	114	
Paran	neter	l est Conditions	Vcc	Min	Тур	Max	Min	Тур	Max	Unit	
		Ι _{οΗ=} —100 μΑ	1.65 V to 5.5 V	Vcc-0.1			Vcc-0.1				
		I _{OH=} —4 mA	1.65 V	1.2			1.2				
.,		I _{OH=} -8 mA	2.3 V	1.9			1.9			.,	
Vo	H	I _{ОН=} —16 mA	0.17	2.4			2.4			V	
		I _{OH=} —24 mA	3 V	2.3			2.3				
		I _{OH=} —32 mA	4.5 V	3.8			3.8				
		I _{OL} =100 μA	1.65 V to 5.5 V			0.1			0.1		
		I _{OL=} 4 mA	1.65 V			0.45			0.45		
		I _{OL=} 8 mA	2.3 V			0.3			0.3	Ī ,,	
Vo	OL.	I _{OL=} 16 mA	0.17			0.4			0.4	- V -	
		I _{OL=} 24 mA	3 V			0.55			0.55		
		I _{OL=} 32 mA	4.5 V			0.55			0.55		
l _i	A or B Inputs	V⊨5.5 V or GND	0 to 5.5 V			±5			±5	μA	
lo	ff	V₁or V₀=5.5 V	0			±10			±10	μΑ	
lo	С	V _i =5.5 V or GND, I _O =0	1.65 V to 5.5 V			10			10	μA	
ΔΙα		One Input at $V_{CC} - 0.6$ V, Other Inputs at V_{CC} or GND	3 V to 5.5 V			10			10	μA	
С	i	V _{I=} V _{CC} or GND	3.3 V		5			5		pF	

⁽¹⁾ All unused digital inputs of the device must be held at V_{CC} or GND to ensure proper device operation

⁽²⁾ JEDEC document JEP157 states that 250-V CDM allows safe manufacturing with a standard ESD control process.

Switching Characteristics, CL=15pF

Over recommended operating free-air temperature range (unless otherwise noted)

		To (Output)	-40°C to 85°C								
Parameter	From (Input)		V _{CC} =1.8 V ± 0.15 V		V _{CC} =2.5 V ± 0.2 V		V _{cc} =3.3 V ± 0.3 V		V _{CC} =5 V ± 0.5 V		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
tpd	A or B	Υ	1.5	7.2	0.7	4.4	0.8	3.6	0.8	3.4	ns

Over recommended operating free-air temperature range, CL=30 pF or 50 pF (unless otherwise noted)

		I O (() LITPLIT)	-40°C to 85°C								
Parameter	From (Input)		Vcc=1.8 V ± 0.15 V		V _{CC} =2.5 V ± 0.2 V		Vcc=3.3 V ± 0.3 V		Vcc=5 V ± 0.5 V		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
tpd	A or B	Υ	2.4	8	1.1	5.5	1	4.5	1	4	ns

Over recommended operating free-air temperature range, CL=30 pF or 50 pF (unless otherwise noted)

	From (Input)	TO (Output)	-40°C to 125°C								
Parameter			Vcc=1.8 V ± 0.15 V		V _{CC} =2.5 V ± 0.2 V		V _{CC} =3.3 V ± 0.3 V		V _{CC} =5 V ± 0.5 V		Unit
			Min	Max	Min	Max	Min	Max	Min	Max	
tpd	A or B	Υ	2.4	10	1.1	7	1	6	1	5	ns

Operating Characteristics

T_A=25°C

	Dovemeter	Test Conditions	V _{cc} =1.8 V	Vcc=1.8 V Vcc=2.5 V		Vcc=5 V	llait	
	Parameter	rest Conditions	Тур	Тур	Тур	Тур	Unit	
Cpd	Power Dissipation Capacitance	f=10 MHz	16	18	19	20	pF	

Typical Characteristics

Over recommended operating free-air temperature range, C_L=30 pF or 50 pF (unless otherwise noted).

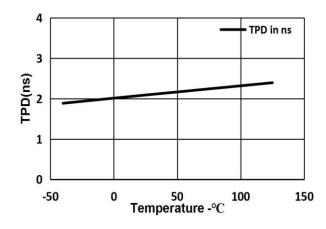


Fig.8-1. T_{PD} Across Temperature at 3.3 V V_{CC}

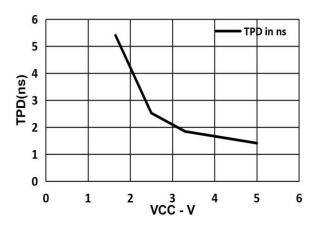
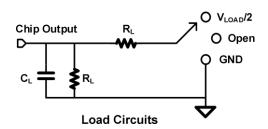
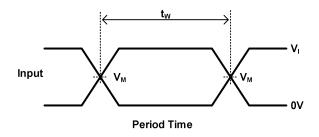
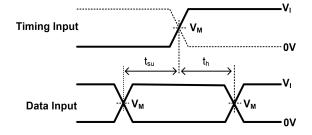
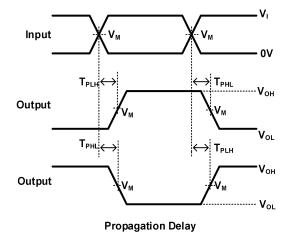
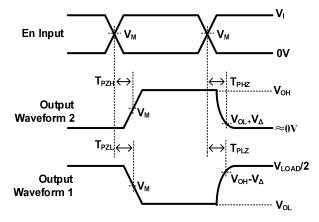



Fig.8-2. TPD Across Vcc at 25°C




Parameter Measurement Information

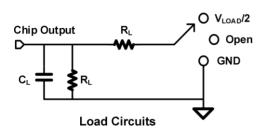



TEST	S1			
ТрнЈТрцн	OPEN			
T _{PLZ} /T _{PZL}	V_{LOAD}			
T _{PHZ} /T _{PZH}	GND			

Vcc	INPUTS		V _M	V _{LOAD}	C _L	R∟	VΔ	
	Vı	T _r /T _f	VM	V LOAD	G _L	NL	VΔ	
1.8V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	15pF	1ΜΩ	0.15V	
2.5V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	15pF	1ΜΩ	0.15V	
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	15pF	1ΜΩ	0.3V	
5V±0.15V	Vcc	≤2.5ns	V _{CC} /2	2×V _{CC}	15pF	1ΜΩ	0.3V	

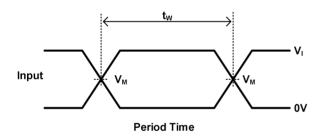
Enable and Disable Times Low-And High-Level Enabling

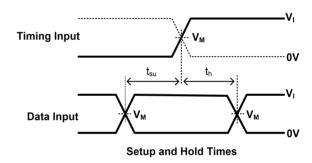
- Notes: A. C_L includes probe and jig capacitance.
 - B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control.

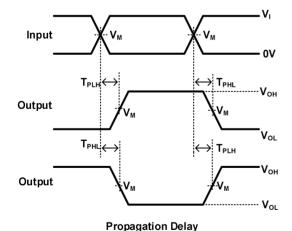

for Output and Inverted Output

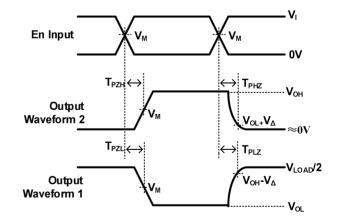
Waveform 2 is for an output with internal conditions such that the F. t_{P.Z.} and t_{P.Z.} are the same as t_{en}, output is high, except when disabled by the output control.

- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as $t_{\text{dis}}.$
- G. t_{PLH} and t_{PHL} are the same as $t_{\text{pd.}}$
- H. All parameters and waveforms are not applicable to all device.




Parameter Measurement Information(Continued)




TEST	S1
T _{PHL} /T _{PLH}	OPEN
T _{PLZ} /T _{PZL}	V_{LOAD}
T _{PHZ} /T _{PZH}	GND

Vcc	INP	UTS	- V _M	V _{LOAD}	C L	R∟	VΔ
VCC	Vı	T _r /T _f		V LOAD	OL	INL	VΔ
1.8V±0.15V	Vcc	≤2ns	V _{CC} /2	2×V _{CC}	30pF	1kΩ	0.15V
2.5V±0.15V	Vcc	≤2ns	Vcc/2	2×V _{CC}	30pF	500 Ω	0.15V
3.3V±0.15V	3V	≤2.5ns	1.5V	6V	30pF	500 Ω	0.3V
5V±0.15V	Vcc	≤2.5ns	V _{CC} /2	2×V _{CC}	30pF	500 Ω	0.3V

Enable and Disable Times Low-And High-Level Enabling

Notes:A. C_L includes probe and jig capacitance.

B. Waveform 1 is for an output with internal conditions such that the output is low, except when disabled by the output control. Waveform 2 is for an output with internal conditions such that the output is high, except when disabled by the output control.

for Output and Inverted Output

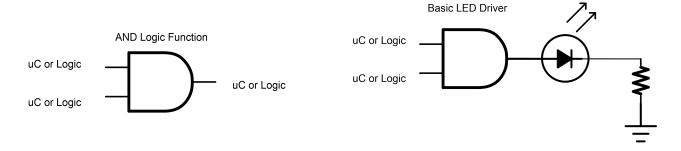
- C. All input pulses are supplied by generators having the following characteristics: PRR 10 MHz, Z =50.
- D. The outputs are measured one at a time, with one transition per measurement.
- E. t_{PLZ} and t_{PHZ} are the same as t_{dis} .
- F. t_{PZL} and t_{PZH} are the same as t_{en}.
- G. t_{PLH} and t_{PHL} are the same as t_{pd} .
- H. All parameters and waveforms are not applicable to all device.

Detailed Description

The HSN74LVC1G08 device contains one 2 -input positive AND gate device and performs the Boolean function $Y=A\cdot B$ or $Y=\overline{\overline{A}+\overline{B}}$. This device is fully specified for partial-power-down applications using I_{off} . The I_{off} circuitry disables the outputs, preventing damaging current back flow through the device when it is powered down.

Feature Description

- Wide operating voltage range.
- Operates from 1.65 V to 5.5 V.
- Allows down voltage translation.
- Inputs accept voltages to 5.5 V.
- l_{off} feature allows voltages on the inputs and outputs, when V_{CC} is 0 V.

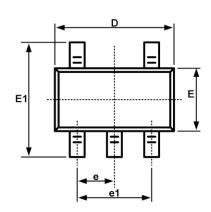

Device Functional Modes

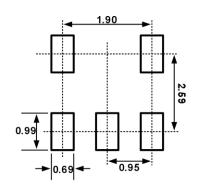
Input	Input A Output Y	
A	В	Υ
Н	Н	Н
L	X	L
X	L	L

Application Information

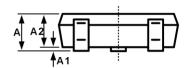
The HSN74LVC1G08 is a high drive CMOS device that can be used for implementing AND logic with high output drive, such as an LED application. It can produce 24 mA of drive current at 3.3 V making it Ideal for driving multiple outputs and good for high speed applications up to 100 MHz. The inputs are 5.5V tolerant allowing it to translate down to Vcc.

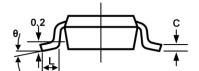
Typical Application



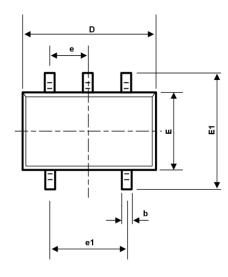

Order information

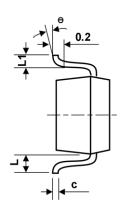
Package	Orderable Device	Packing Option	
SOT-23-5L	HSN74LVC1G08DBVR	3000/Reel	
SC-70-5(SOT-353)	HSN74LVC1G08DCKR	3000/Reel	

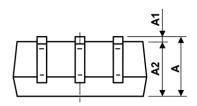



Package Outline SOT-23-5L

Recommended Land Pattern (Unit: mm)






Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min	Max	Min	Max	
A	1.050	1.250	0.041	0.049	
A1	0.000	0.100	0.000	0.004	
A2	1.050	1.150	0.041	0.045	
b	0.300	0.500	0.012	0.020	
С	0.100	0.200	0.004	0.008	
D	2.820	3.020	0.111	0.119	
Е	1.500	1.700	0.059	0.067	
E1	2.650	2.950	0.104	0.116	
е	0.950BSC		0.037BSC		
e1	1.800	2.000	0.071	0.079	
L	0.300	0.600	0.012	0.024	
L1	0.600REF		0.024REF		
θ	0°	8°	0°	8°	

Package Outline SC-70-5

symbol	Dimension In Millimeters		Dimensions In Inches	
	Min	Max	Min	Max
Α	0.900	1.100	0.035	0.043
A1	0.000	0.100	0.000	0.004
A2	0.900	1.000	0.035	0.039
b	0.150	0.350	0.006	0.014
С	0.110	0.175	0.004	0.007
D	2.000	2.200	0.079	0.087
Е	1.150	1.350	0.045	0.053
E1	2.150	2.450	0.085	0.096
е	0.650TYP		0.026TYP	
e1	1.200	1.400	0.047	0.055
L	0.525REF		0.021REF	
L1	0.260	0.460	0.010	0.018
θ	0°	8°	0°	8°

Attention

- Any and all HUA XUAN YANG ELECTRONICS products described or contained herein do not have specifications that can handle applications that require extremely high levels of reliability, such as life-support systems, aircraft's control systems, or other applications whose failure can be reasonably expected to result in serious physical and/or material damage. Consult with your HUA XUAN YANG ELECTRONICS representative nearest you before using any HUA XUAN YANG ELECTRONICS products described or contained herein in such applications.
- HUA XUAN YANG ELECTRONICS assumes no responsibility for equipment failures that result from using products at values that exceed, even momentarily, rated values (such as maximum ratings, operating condition ranges, or other parameters) listed in products specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein.
- Specifications of any and all HUA XUAN YANG ELECTRONICS products described or contained herein stipulate the performance, characteristics, and functions of the described products in the independent state, and are not guarantees of the performance, characteristics, and functions of the described products as mounted in the customer's products or equipment. To verify symptoms and states that cannot be evaluated in an independent device, the customer should always evaluate and test devices mounted in the customer's products or equipment.
- HUA XUAN YANG ELECTRONICS CO.,LTD. strives to supply high-quality high-reliability products. However, any and all semiconductor products fail with some probability. It is possible that these probabilistic failures could give rise to accidents or events that could endanger human lives, that could give rise to smoke or fire, or that could cause damage to other property. When designing equipment, adopt safety measures so that these kinds of accidents or events cannot occur. Such measures include but are not limited to protective circuits and error prevention circuits for safe design, redundant design, and structural design.
- In the event that any or all HUA XUAN YANG ELECTRONICS products(including technical data, services) described or contained herein are controlled under any of applicable local export control laws and regulations, such products must not be exported without obtaining the export license from the authorities concerned in accordance with the above law.
- No part of this publication may be reproduced or transmitted in any form or by any means, electronic or mechanical, including photocopying and recording, or any information storage or retrieval system, or otherwise, without the prior written permission of HUA XUAN YANG ELECTRONICS CO.,LTD.
- Information (including circuit diagrams and circuit parameters) herein is for example only; it is not guaranteed for volume production.

 HUA XUAN YANG ELECTRONICS believes information herein is accurate and reliable, but no guarantees are made or implied regarding its use or any infringements of intellectual property rights or other rights of third parties.
- Any and all information described or contained herein are subject to change without notice due to product/technology improvement, etc. When designing equipment, refer to the "Delivery Specification" for the HUA XUAN YANG ELECTRONICS product that you intend to use.