80286

High-Performance Microprocessor with

Memory Management and Protection

u

Advanced
Micro
Devices

DISTINCTIVE CHARACTERISTICS

R High-performance processor (up to 13.3 times
IAPX 86 when using the 16-MHz 80286)

B Large address space
-16 Mb physical
-1 Gb virtual memory per task

B Integrated memory management, four-level
memory protection and support for virtual
memory and operating systems

® Two IAPX 86 upward-compatible operating
modes

~iAPX 86 real address mode
—Protected virtual address mode

B High bandwidth bus interface (16 Mb/s)

B Range of clock rates
-8 MHz 80286-8
-10 MHz 80286-10
-12 MHz 80286-12
-16 MHz 80286—16

GENERAL DESCRIPTION

The 80286 is an advanced, high-performance micropro-
cessor with specially optimized capabilities for multiple
user and multitasking systems. The 80286 has buiit-in
memory protection that supports operating system and
task isolation as well as program and data privacy within
tasks. A 16-MHz 80286 provides up to 13.3 times
greater throughput than the standard 5-MHz 8086. The
80286 includes memory management capabilities

that map upto 2% bytes (one gigabyte) of virtual address
space per task into 2* bytes (16 Mb) of physical
memory.

The 80286 is upward-compatible with iAPX 86 and 88
software. Using iAPX 86 real address mode, the 80286
is object-code compatible with existing iIAPX 86, 88
software.

BLOCK DIAGRAM

r
Address Unit (AU
: *9 : Address Ao—ho __
i Physical Latches and Drivers BHE, MO
-
K
| Address | Processor|g]1 %
Adder i Prefetcher | | Extension [S | PEREQ
: Segment | } i imertace [¢—7— FEADY. HOLD
I [UNp—— | { Bus Control 57, %, cop
: Selgmpnt Segment l] :-ILD;\ ook
mit Sizes Data Transceive
Checker a rs
| D1s-Do
| 6-Byte |
1 Prefetch |
| Queue
U e eV L a Bus Unit (BU) |
ni——1rr——1t=——<- 3 b b= -
[ALU |
l I r_ B Vaniimph —= l¢—— RESET
i Registers | Control | | 3 Decoded Instruction | ion | [¢—cik
| 1 Queue ecoder Unit(uy | Vss
| N T | M— v,
L Execution Unit (W) _ 1] 0 B Jje—>cw
NMI BU3Y
INTR ERFOR
03552-1

1-66

Publication #03552 Rev.G Amendment 0
lssue Date: December 1991

AMD u

GENERAL DESCRIPTION (continued)

In protected virtual address mode, the 80286 is source-
code compatible with iAPX 86, 88 software and may
require upgrading to use virtual addresses supported by
the 80286's integrated memory management and pro-
tection mechanism. Both modes operate at full 80286
performance and execute a superset of the iAPX 86 and
88 instructions.

The 80286 provides special operations to support the
efficient implementation and execution of operating sys-
tems. For example, one instruction can end execution
of one task, save its state, switch to a new task, load
its state, and start execution of the new task. The 80286
also supports virtual memory systems by providing
a segment-not-present exception and restartable
instructions.

Related AMD Products

Part No. Description

82284 Clock Driver

82C54 Programmable Interval Timer
AmM9517A DMA Controller

80286 1-67

n AMD

CONNECTION DIAGRAMS

Component Pad Views—As viewed from LCC PC Board Views—As viewed from the
underside of component on the PC Board component side of the PC Board

o
X <
I

5| 21312 212) 5121221 2) 212 =| 2|

T— Pin No. 1 Mark 03552-2

. . 55
There are no electrical connections on the 03552-3

bottom of this package

PIN DESIGNATIONS
(Sorted by pin number)

Pin Pin Pin Pin Pin Pin
No. Name No. Name No. Name
1 BHE 24 Ay 47 Dis
2 NC 25 As 48 De
3 NC 26 As 49 Dia
4 St 27 As 50 D7
5 SO 28 Aa 51 Dss
6 PEACK 29 RESET 52 CAP
7 Az 30 Vee 53 ERROR
8 Az 31 CLK 54 BUSY
9 Vss 32 Az 55 NC
10 A2 33 Ai 56 NC
11 Az 34 Ao 57 INTR
12 Aig 35 Vss 58 NC
13 Ais 36 Do 59 NMI
14 A7 37 Ds 60 Vss
15 Ass 38 D1 61 PEREQ
16 Ais 39 Do 62 Vee
17 Ars 40 D2 63 READY
18 Aia 41 Do 64 HOLD
19 Az 42 Ds 65 HLDA
20 An 43 D1 66 COD/INTA
21 Ao 44 Da 67 M/10
22 Ao 45 D12 68 LOCK
23 As 46 Ds

1-68 80286

AMD a

ORDERING INFORMATION
Standard Products

AMD standard products are available in several packages and operating ranges. The order number (Valid Combination) is
formed by a combination of the elements below.

R 80286 16

—_ _
I———— SPEED OPTION

~16 = 16 MHz
= 125 MHz

-10 = 10 MHz
= 8MHz

DEVICE NUMBER/DESCRIPTION

80286

High-Performance Microprocessor with Memory
Management and Protection

PACKAGE TYPE
R = 68-Pin Ceramic Leadless Chip Carrier (CA2068)

TEMPERATURE RANGE
Blank = Commercial (Tc = 0°C 10+85°C)

Valid Combinations

Valid Combinations Valid Combinations list configurations planned to

80286-8 be supported in volume for this device. Consult
80286—10 the local AMD sales office to contirm availability of
R 80286-12 specific valid combinations, to check on newly re-

leased combinations, and to obtain additional
data on AMD’s standard military grade products.

80286-16

80286 1-69

a AMD

PIN DESCRIPTION

CLK

System Clock (Input; Active High)

System Clock provides the fundamental timing for
80286 systems. It is divided by two inside the 80286 to
generate the processor clock. The intemal divide-by-
two circuitry can be synchronized to an external clock
generator by Low-to-High transition on the RESET
input.

Do-D1s

Data Bus (Input/Output; Active High)

Data Bus inputs data during memory, IO, and interrupt
acknowledge read cycles; outputs data during memory
and I/O write cycles. The data bus is active High and
floats to three-state OFF during bus hold acknowledge.

Az—Ao

Address Bus (Output; Active High)

Address Bus outputs physical memory and /O port
addresses. A, is Low when data is to be transferred
onpins D,~D,. A,;—A,, are Low during I/O transfers. The
address bus is active High and floats to three-state OFF
during bus hold acknowledge.

BHE

Bus High Enable (Output; Active Low)

Bus High Enable indicates transter of data on the upper
byte of the data bus D,~D,. Eight-bit oriented devices
assigned to the upper byte of the data bus would nor-
mally use BHE to condition chip select functions. BHE is
active Low and floats to three-state OFF during bus hold
acknowledge.

BHE and Ao Encodings

Value Vtﬁfle Function

0 0 Word transfer
0 1 Byte transfer on upper half of data bus (D, ,)
1 0 Byte transfer on lower half of data bus (D,)
1 1 Reserved

51,50

Bus Cycle Status (Output; Active Low)

Bus Cycle Status indicates initiation of a bus cycle and,
along with M/IO and COD/INTA, defines the type of bus
cycle. The bus is in a Ts state whenever one or both are
Low. 51 and 50 are active Low and float to three-state
OFF during bus hold acknowledge.

80286 Bus Cycle Status Definition

COD/
INTA MIO Si S0 Bus Cycle Status Definition

o

—_
)
L3

3
]

Interrupt acknowledge
Reserved

Reserved

None; not a status cycle
If A, =1 then halt; else shutdown
Memory data read
Memory data write
None; not a status cycle
Reserved

/O Read

VO Write

None; not a status cycle
Reserved

Memory instruction read
Reserved

None; not a status cycle

(High)

—_ ek h k ikt B A OOO0O0OO0O0O
[e X = = N = R T Gy e N

- Ll OO A2 OO0 LA QO - —m OO
2O~ O0—=-0=20-+0—20—2~0—=20

M/IO

Memoryi0 Select (Output)

Memory/I0 Select distinguishes memory access from
I/0 access. If High during Ts, a memory cycle or a halt/
shutdown cycle is in progress. If Low, an 1/O cycle or an
interrupt acknowledge cycle is in progress. M/IO floats
to three-state OFF during bus hold acknowledge.

COD/INTA

Code/Interrupt Acknowledge (Qutput)
Codef/interrupt Acknowledge distinguishes instruction
fetch cycles from memory data read cycles. Also distin-
guishes interrupt acknowledge cycles from /O cycles.
COD/INTA floats to three-state OFF during bus hold
acknowledge.

LOCK

Bus Lock (Output; Active Low)

Bus Lock indicates that other system bus masters are
not to gain control of the system bus following the cur-
rent bus cycle. The LOCK signal may be activated ex-
plicitly by the LOCK instruction prefix or autornatically by
80286 hardware during memory XCHG instructions, in-
terrupt acknowledge, or descriptor table access. COCK
is active Low and floats to three-state OFF during hold
acknowledge.

1-70 80286

AMD a

PIN DESCRIPTION (continued)

READY
Bus Ready (Input; Active Low)

Bus Ready terminates a bus cycle. Bus cycles are ex-
tended without limit until terminated by READY Low.
READY is an active Low synchronous input requiring
set-up and hold times relative to the system clock be met
for correct operation. READY is ignored during bus hold
acknowledge.

HOLD, HLDA
Bus Hold Request and Hold Acknowledge
(Input/Output; Active High)

Bus Hold Request and Hold Acknowledge control own-
ership of the 80286 local bus. The HOLD input allows
another local bus master to request control of the local
bus. When control is granted, the 80286 will float its bus
drivers to three-state OFF and then active HLDA, thus
entering the bus hold acknowledge condition. The local
bus will remain granted to the requesting master until
HOLD becomes inactive which results in the 80286 de-
activating HLDA and regaining control of the local bus.
This terminates the bus hold acknowledge condition.
HOLD may be asynchronous to the systemclock. These
signals are active High.

INTR
Interrupt Request (Input; Active High)

Interrupt Request requests the 80286 to suspend its
current program execution and service a pending exter-
nal request. Interrupt requests are masked whenever
the interrupt enable bit in the flag word is cleared. When
the 80286 responds to an interrupt request, it performs
two interrupt acknowledge bus cycles to read an 8-bit
interrupt vector that identifies the source of the interrupt.
To assure program interruption, INTR must remain
active until the first interrupt acknowledge cycle is com-
pleted. INTR is sampled at the beginning of each
processor cycle and must be active High at least two
processor cycles before the current instruction ends in
order to interrupt before the next instruction. INTR is
level sensitive, active High, and may be asynchronous
to the system clock.

NMI

Non-Maskable Interrupt Request

(Input; Active High)

Non-maskable Interrupt Request interrupts the 80286
with aninternally supplied vector value of 2. No interrupt
acknowledge cycles are performed. The interrupt en-
able bit in the 80286 flag word does not affect this input.
The NMI input is active High, may be asynchronous to
the system clock, and is edge triggered after internal
synchronization. For proper recognition, the input must
have been previously Low for at least four system clock
cycles and remain High for at least four system clock
cycles.

PEREQ, PEACK

Processor Extension Operand Request and
Acknowledge (Input/Output)

Processor Extension Operand Request and Acknowl-
edge extended the memory management and protec-
tion capabilities of the 80286 to processor extensions.
The PEREQ input requests the 80286 to perform a data
operand transfer for a processor extension. The PEACK
output signals the processor extension when the re-
quested operand is being transferred. PEREQ is active
High and may be asynchronous to the system clock.
PEACK is active Low.

BUSY, ERROR

Processor Extension Busy and Error

(Input/input, Active Low)

Processor Extension Busy and Error indicate the oper-
ating condition of a processor extension to the 80286.
An active BUSY input stops 80286 program execution
on WAIT and some ESC instructions until BUSY be-
comes inactive (High). The 80286 may be interrupted
while waiting for BUSY to become inactive. An active
ERROR input causes the 80286 to perform a processor
extension interrupt when executing WAIT or some ESC
instructions. These inputs are active Low and may be
asynchronous to the system clock.

RESET

System Reset (Input; Active High)

System Reset clears the internal logic of the 80286 and
is active High. The 80286 may be reinitialized at any
time with a Low-to-High transition on RESET which re-
mains active for more than 16 system clock cycles. Dur-
ing RESET active, the output pins of the 80286 enter the
state shown below.

80286 Pin State During Reset

Pin Value Pin Names
1 (High) 30, 57, PEACK, A,-A,, BHE, LOCK
0 (Low) M/O, COD/INTA, HLDA

Three-state OFF D,s~D,

Operation of the 80286 begins after a High-to-Low tran-
sition on RESET. The High-to-Low transition of RESET
must be synchronous to the system clock. Approxi-
mately 50 system clock cycles are required by the
80286 for internal initializations before the first bus cycle
to fetch code from the power-on execution address is
performed.

80286 1-71

n AMD

PIN DESCRIPTION (continued)

A Low-to-High transition of RESET synchronous to the
system clock will begin a new processor cycle at the
next High-to-Low transition of the system clock. The
Low-to-High transition of RESET may be asynchronous
to the system clock; however, in this case it cannot be
predetermined which phase of the processor clock will
occur during the next system period. Synchronous
Low-to-High transitions of RESET are only required for
systems where the processor clock must be phase syn-
chronous to another clock.

Vss
System Ground (Input)

System Ground: 0 V.

Vee
System Power (Input)

System Power: +5 V power supply.

CAP
Substrate Filter Capacitor (Input; Active High)

A 0.047 uF £20% 12 V capacitor must be connected
between this pin and ground. This capacitor filters the
output of the intemal substrate bias generator. A maxi-
mum DC leakage current of 1 pA is allowed through the
capacitor.

For correct operation of the 80286, the substrate bias
generator must charge this capacitor to its operating
voltage. The capacitor charge-up time is 5 ms (Max)
after Vec and CLK reach their specified AC and DC pa-
rameters. RESET may be applied to prevent spurious
activity by the CPU during this time. After this time, the
80286 processor clock can be phase synchronized to
another clock by pulsing RESET Low synchronous to
the system clock.

FUNCTIONAL DESCRIPTION
Introduction

The 80286 is an advanced, high-performance micropro-
cessor with specially optimized capabilities for multiple
user and multi-tasking systems. Depending on the ap-
plication, the 80286's performance is up to 13.3 times
faster than the standard 5-MHz 8086's, while providing
complete upward software compatibility with AMD’s
iAPX 86, 88, and 186 family of CPUs.

The 80286 operates in two modes: iAPX 86 real address
mode and protected virtual address mode. Both modes
execute asupersetof the iAPX 86 and 88 instruction set.

In iAPX 86 real address mode programs use real ad-
dresses with up to one megabyte of address space.
Programs use virtual addresses in protected virtual ad-
dress mode, also called protected mode. In protected
mode, the 80286 CPU automatically maps 1 gigabyte of
virtual addresses per task into a 16-megabyte real ad-
dress space. This mode also provides memory protec-
tion to isolate the operating system and ensure privacy
of each task’s programs and data. Both modes provide
the same base instruction set, registers, and addressing
modes.

The following pages describe first, the base 80286 ar-
chitecture common to both modes; second, iAPX 86 real
address mode; and third, protected mode.

80286 Base Architecture

The iAPX 86, 88, 186, and 286 CPU family all contain
the same basic set of registers, instructions, and ad-
dressing modes. The 80286 processor is upward-com-
patible with the 8086, 8088, and 80186 CPUs.

Register Set

The 80286 base architecture has fifteen registers as
shown in Figure 1. These registers are grouped into the
foliowing four categories:

General Reglsters: Eight 16-bit general purpose regis-
ters used to contain arithmetic and logical operands.
Four of these (AX, BX, CX, and DX) can be used sither
in their entirety as 16-bit words or split into pairs of
separate 8-bit registers.

Segment Reglsters: Four 16-bit special purpose regis-
ters select, at any given time, the segments of memory
that are immediately addressable for code, stack, and
data. (For usage, refer to Memory Organization.)

Base and Index Registers: Four of the generai pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers may
contain base addresses or indexes to particular loca-
tions within a segment. The addressing mode deter-
mines the specific registers used for operand address
calculations.

Status and Control Registers: Three 16-bit special
purpose registers record or control certain aspects of
the 80286 processor state. These include the Instruc-
tion Pointer, which contains the offset address of the
next sequential instruction to be executed.

1-72 80286

AMD n

16-Bit Special
Register Register o
Name Function 15
07 cs Code Segment Selector
Byte ax[aH AL Multiply/Divide DS Data Segment Selector
Addressable VO Instructi
(8-Bit Register | DX{ DH DL nstructions S8 Stack Segment Selector
g“;‘g‘;:) cx| cH CL__ |} Loop/Shift Repeat Count ES Extra Segment Selector
BX i
BH BL Base Registors Segment Registers
BP
15 0
S| Index Regist
bI ndex Registers F Flags
SP } Stack Pointer P Instruction Pointer
15 0 MSW Machine Status Word
General Registers
Status and Control Registers
Figure 1. Register Set 03852-7
Status Flags:
Carry
Parity
Auxiliary Carry
Zero
Sign
Overflow
15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0
e T
Flags: | NT IO0PL OF | DF IF TF | SF CF
Control Flags:
Trap Flag
Interrupt Enable
Direction Flag
Special Fields:
/O Privilege Level
Nested Task Flag
15 3 2 1 0
EM| MP | PE
3 Task Switch ——T
| Reserved Processor Extension Emulated
Monitor Processor Extension
Protection Enable
03552-8

Figure 2. Status and Control Register Bit Functions

80286

1-73

n AMD

Flags Word Description

The Flags Word (Flags) records specific characteristics
of the result of logical and arithmetic instructions (bits 0,
2, 4, 6, 7, and 11) and controls the operation of the
80286 within a given operating mode (bits 8 and 9).
Flags is a 16-bit register. The function of the flag bits is
given in Table 1.

Table 1. Flags Word Bit Functions

Bit
Position Name Function

0 CF Carry Flag—Set on high-order bit carry or
borrow; cleared otherwise

2 PF Parity Flag—Set if low-order 8 bits of re-
sult contain an even number of 1 bits;
cleared otherwise

4 AF Seton carry-from or borrow-to the low-or-
der four bits of AL; cleared otherwise

6 ZF Zero Flag—Set if result is zero; cleared
otherwise

7 SF Sign Flag—Set equal to high-order bit of

result (0 if positive, 1 if negative)

11 OF Overflow Flag—Set if resutt is atoo-large
positive number or a too-small negative
number (excluding sign-bit) to fit in desti-
nation operand; cleared otherwise

8 TF Single Step Flag—Once set, a single
step interrupt occurs after the next in-
struction executes. TF is cleared by the
single step interrupt

9 IF Interrupt-Enable Flag—When set, mask-

able interrupts will cause the CPU to
transfer control to an interrupt vector
specified location

10 DF Direction Flag—Causes string instruc-
tions to auto-decrement the appropriate
index registers when set. Clearing DF
causes auto increment.

instruction itself, or in memory. Zero-operand instruc-
tions (e.g., NOP and HLT) are usually one byte long.
One-operand instructions (e.g., INC and DEC) are usu-
ally two bytes long, but some are encoded in only one
byte. One-operand instructions may reference a regis-
ter or memory location. Two-operand instructions per-
mit the following six types of instruction operations.

Register to Register
Memory to Register
Immediate to Register
Memory to Memory
Register to Memory
Immediate to Memory

Two-operand instructions (e.g., MOV and ADD) are
usually three to six bytes long. Memory to memory op-
erations are provided by a special class of string instruc-
tions requiring one to three bytes. For detailed instruc-
tion formats and encodings, refer to the instruction set
summary at the end of this document.

General Purpose

Instruction Set

The instruction set is divided into seven categories: data
transfer, arithmetic, shift/rotate/logical, string manipula-
tion, program transfer, high-level instructions, and proc-
essor control. These categories are summarized in
Figures 3-9.

An 80286 instruction can reference zero, one, or two
operands where an operand resides in a register, in the

MOV Move byte or word

PUSH Push word onto stack

POP Pop word off stack

PUSHA Push all registers on stack

POPA Pop all registers from stack

XCHG Exchange byte or word

XLAT Translate byte

Input/Output

IN Input byte or word

ouT Output byte or word
Address Object

LEA Load effective address

LDS Load pointer using DS

LES Load pointer using ES

Flag Transfer

LAHF Load AH register from flags
SAHF Store AH register in flags
PUSHF Push flags onto stack
POPF Pop flags off stack

Figure 3. Data Transfer Instructions

1-74 80286

AMD a

Addition MOVS Move byte or word string
INS Input bytes or word string
ADD Add byte or word OuUTS Output bytes or word string
CMPS Compare byte or word string
ADC Add byte or word with carry SCAS Scan byte or word string
INC Increment byte or word by 1 LODS Load byte or word string
AAA ASCII adjust for addition STOS Store byte or word string
DAA Decimal adjust for addition REP Repeat
REPE/REPZ Repeat while equal/zero
Subtraction REPNE/REPNZ Repeat while not equal/not zero
SUB Subtract byte or word Figure 5. String Instructions
SBB Subtract byte or word with borrow
DEC Decrement byte or word by 1
NEG Negate byte or word Logicals
CMP Compare byte or word wny e
AAS ASCII adjust for subtraction NoT uNOt 'byte or word
DAS Decimal adjust for subtraction AND And” byte or word
OR “Inclusive or” byte or word
) XOR “Exclusive or” byte or word
Multiplication TEST “Test” byte or word
MUL Multiply byte or word unsigned
IMUL Integer multiply byte or word Shifts
AAM ASCII adjust for multiply - - - -
SHL/SAL Shift logical/arithmetic left byte or word
et SHR Shift logical right byte or word
Division SAR Shift arithmetic right byte or word
DIV Divide byte or word unsigned
DIV Integer divide byte or word Rotates
AAD ASCIi adjust for division
CBW Convert byte to word ROL Rotate left byte or word
cwD Convert word to double word ROR Rotate right byte or word
RCL Rotate through carry left byte or word
Figure 4. Arithmetic Instructions RCR Rotate through carry right byte or word
Figure 6. Shift/Rotate/Logical
Conditional Transfers Unconditional Transfers
JAUNBE Jump if above/not below nor equal CALL Call procedure
JAEANB Jump if above or equal/not below RET Return from procedure
JBANAE Jump if below/not above nor equal JMP Jump
JBEANA Jump if below or equal/not above
JC Jump if carry iteration Controls
JENZ Jump if equal/zero
JGANLE Jump if greater/not less nor equal LOOP Loop
JGEANL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JLAUNGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/UNG Jump if less or equal/not greater JCXZ Jump if register CX=0
JNC Jump if not carry
JNEANZ Jump if not equal/not zero Interrupts
JNO Jump if not overflow
JNPAPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO Interrupt if overfiow
JO Jump if overflow IRET Interrupt return
JPAJPE Jump if parity/parity even
JS Jump if sign

Figure 7. Program Transfer Instructions

80286

1-75

n AMD

Flag Operations
STC Set carry flag
CLC Clear carry flag
CMC Complement carry flag
STD Set direction flag
CLD Clear direction flag
STI Set interrupt enable flag
CLI Clear interrupt enable flag

External Synchronlzation

HLT Halt until interrupt or reset

WAIT Wait for BUSY not active

ESC Escape to extension processor

LOCK Lock bus during next instruction
No Operation

NOP No operation

Execution Environment Control

LMSW
SMSW

Load machine status word
Store machine status word

Flgure 8. Processor Control Instructions

ENTER Format stack for procedure entry
LEAVE Restore stack for procedure exit
BOUND Detects values outside prescribed range

Figure 9. High-Level Instructions

All instructions that address operands in memory must
specify the segment and the offset. For speed and com-
pact instruction encoding, segment selectors are usu-
ally stored in the high speed segment registers. An in-
struction need specify only the desired segment register
and an offset to address a memory operand.

-
e ¥

Pointer
Segment Offset
31 16 15 0
—_— N Operand Selected
Selected Segment

A 4

J)
1 <Y

5 -~
Memory ™

03552-9
Figure 10. Two-Component Address

Table 2. Segment Register Selection Rules

Memory Organization

Memory is organized as sets of variable length seg-
ments. Each segment is a linear contiguous sequence
of up to 64K(2'%) 8-bit bytes. Memory is addressed using
a two-component address (a pointer) that consists of a
16-bit segment selector and a 16-bit offset. The seg-
ment selectorindicates the desired segment in memory.
The offset component indicates the desired byte ad-
dress within the segment.

Most instructions need not explicitly specify which seg-
ment register is used. The correct segment register is
automatically chosen according to the rules of Table 2.
These rules follow the way programs are written (see
Figure 11) as independent modules that require areas
for code and data, a stack, and access to external data
areas.

Memory Segment

Reference Register Impliclt Segment

Needed Used Selection Rule

Instructions Code (CS) Automatic with instruction
prefetch

Stack Stack (SS) All stack pushes and pops.
Any memory reference which
uses BP as a base register.

Local Data Data (DS) All data references except
when relative to stack or
string destination.

External Extra (ES) Alternate data segment and

(Global) Data destination of string operation.

Special segment override instruction prefixes allow the
implicit segment register selection rules to be overrid-
den for special cases. The stack, data, and extra seg-
ments may coincide for simple programs. To access
operands that do not reside in one of the four immedi-
ately available segments, either a full 32-bit pointer can
be used or a new segment selector must be loaded.

1-76 80286

AMD n

re===-- hl
Code
Module A Data
1)
Code cpPu
Modute B
ocuie Data I Code
: oL Data
Process Stack
Stack
Extra
N ! Segment
! ! Registers
Process
Data
Block 1
Process
Data
Block 2
Ceemnn . 03552-10
Memory

Figure 11. Segmented Memory Helps
Structure Software

Addressing Modes

The 80286 provides a total of eight addressing modes
for instructions to specify operands. Two addressing
modes are provided for instructions that operate on reg-
ister or immediate operands:

Register Operand Mode: The operand is located in
one of the 8- or 16-bit general registers.

Iimmediate Operand Mode: The operand is included in
the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: segment
selector and offset. The segment selector is supplied by
a segment register either implicitly chosen by the ad-
dressing mode or explicitly chosen by a segment over-
ride prefix. The offset is calculated by summing any
combination of the following three address elements:

the displacement (an 8- or 16-bitimmediate value con-
tained in the instruction)

the base (contents of either the BX or BP base regis-
ters)

the index (contents of eitherthe Sl or Dl index registers)

Any carry out from the 16-bit addition is ignored. Eight-
bit displacements are sign extended to 16-bit values.

Combinations of these three address elements define
the six memory addressing modes here described:

Direct Mode: The operand’s offset is contained in the
instruction as an 8- or 16-bit displacement element.

Register Indirect Mode: The operand’s offset is in one
of the registers S, DI, BX, or BP.

Based Mode: The operand’s offset is the sumof an8-or
16-bit displacement and the contents of a base register
(BX or BP).

Indexed Mode: The operand’s offset is the sumof an 8-
or 16-bit displacement and the contents of an index
register (Sl or DI).

Based Indexed Mode: The operand’s offset is the sum
of the contents of a base register and an index register.

Based Indexed Mode with Displacement: The
operand’s offset is the sumof abase register's contents,
an index register's contents, and an 8- or 16-bit dis-
placement.

Data Types
The 80286 directly supports the following data types:

Integer: A signed binary numeric value con-
tained in an 8-bit byte or a 16-bit word.
All operations assume a two’s comple-
ment representation. Signed 32- and
64-bit integers are supported using the

80287 Numeric Data Processor.

Ordinal: An unsigned binary numeric value con-

tained in an 8-bit byte or 16-bit word.

A 32-bit quantity, composed of a seg-
ment selector component and an offset
component. Each component is a
16-bit word.

A contiguous sequence of bytes or
words. A string may containfrom 1 byte
to 64K bytes.

A byte representation of alphanumeric
and control characters using the ASCII
standard of character representation.

Pointer:

String:

ASCIL:

BCD: A byte (unpacked) representation of
the decimal digits 0-9.

A byte (packed) representation of two
decimal digits 0-9 storing one digit in
each nibble of the byte.

Floating Point: A signed 32-, 64-, or 80-bit real number
representation. (Floating point oper-
ands are supported using the IAPX 287
Numeric Processor configuration.)

Packed BCD:

Figure 12 graphically represents the data types sup-
ported by the 80286.

80286 1-77

n AMD

0

Signed TTTTTT
Byte
Sign Bit =
Magnitude
7 0
Unsigned TTr[rrT
Byte
L MSB
Magnitude
0
15 14 8 7 0
Si‘%’neg Tlllllllllllll
or
Sign Bit— L_MSB _
Magnitude
43 +2 +1 0
; 1 16 15 0
g;g&;g lIllIIIIIIIIIITTIIIIIIIIIIIIIII
Word*
Sign Bit = L=MSB ,]
Magnitude
i +7 +6 +5 +4 +3 +2 +1 1]
Signed ¢ 48 47 323 1615)
Nora" [T T T 11
Word*
Sign Bit = L.-MSB ,
Magnitude
1% +1 0
Unsigned [TITJITTJTITT]TITT
aord ! I !
L MSB
Magnitude
Binary 7N 7 0
Coded [III!IIIIIIIIII
Decimal i
(BCD) BCD BCD BCD
Digit N Digit 1 Digit 0
; N 7 o7 ©)
ASCII coe ||”||”
ASCHt ASCII ASCII
Character, Character, Character,
7 +N 2 +1 7 0
Packed [TTTTTT TTTJTTT VT Tl
BoD -] |
Most Significant Digit Least Significant Digit
735 *N 0 715 *1 0715 O 0
String oo | I
Byte/Word N Byte/Word 1 Byte/Word 0
+3 +2 +1 0
1 16 15 1
Pointer IIIIIIIlITI |||TI'|'|'|'I'|'I'I'IT1'|'|'I'I'
i
Selector Offset
+9 +8 +7 +6 +5 +4 +3 +2 +1
Floating o
pont || | | | LT T |
Sign Bit - -
Exponent Magnitude

Figure 12. 80286 Supported Data Types

*Supported by iAPX 286/287 Numeric Data Processor Configuration 03552-11

1-78 80286

AMD n

/0 Space

The I/O space consists of 64K 8-bit or 32K 16-bit ports.
/O instructions address the /O space with either an
8-bit port address, specified in the instruction, or a 16-bit
port address in the DX register. Eight-bit port addresses
are zero extended such that Ais—As are Low. /O port
addresses 00F8(H) through 00FF(H) are reserved.

Interrupts

Aninterrupt transfers execution to a new program loca-
tion. The old program address (CS:IP) and machine
state (Flags) are saved on the stack to allow resumption
of the interrupted program. Interrupts fall into three
classes: hardware initiated, INT instructions, and in-
struction exceptions. Hardware initiated interrupts occur
in response to an external input and are classified as
non-maskable or maskable. Programs may cause an
interrupt with an INT instruction. Instruction exceptions
occur when an unusual condition, which prevents fur-
ther instruction processing, is detected while attempting
to execute an instruction. The return address from an
exception will always point at the instruction causing the
exception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the proper
interrupt service routine for each interrupt. Interrupts
0-31, some of which are used for instruction exceptions,
are reserved. For each interrupt, an 8-bit vector must be
supplied to the 80286 which identifies the appropriate
table entry. Exceptions supply the interrupt vector inter-
nally. INT instructions contain or imply the vector and
allow access to all 256 interrupts. Maskable hardware-
initiated interrupts supply the 8-bit vector to the CPU
during an interrupt acknowledge bus sequence. Non-
maskable hardware interrupts use a predefined inter-
nally supplied vector.

Maskable Interrupt (INTR)

The 80286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by setting
the interrupt flag bit (IF) in the flag word. All 224

user-defined interrupt sources can share this input, yet
they can retain separate interrupt handlers. An 8-bit
vector read by the CPU during the interrupt acknowl-
edge sequence (discussed in the System interface
section) identifies the source of the interrupt.

Further maskable interrupts are disabled while servicing
an interrupt by resetting the IF but as part of the re-
sponse to an interrupt or exception. The saved flag word
will reflect the enable status of the processor prior to the
interrupt. Untit the flag word is restored to the flag regis-
ter, the interrupt flag will be zero unless specifically set.
The interrupt return instruction includes restoring the
flag word, thereby restoring the original status of IF.

Non-Maskable Interrupt Request (NMI)

A non-maskable interrupt input (NM!) is also provided.
NMI has higher priority than INTR. A typical use of NMi
would be to activate a power failure routine. The activa-
tion of this input causes an interrupt with an internally
supplied vector value of 2. No external interrupt ac-
knowledge sequence is performed.

While executing the NMI servicing procedure, the 80286
will not service further NMI requests, INTR requests, or
the processor extension segment overrun interrupt until
an interrupt return (IRET) instruction is executed or the
CPU is reset. If NMt occurs while currently servicing an
NMI, its presence will be saved for servicing after exe-
cuting the first IRET instruction. IF is cleared at the
beginning of an NMI interrupt to inhibit INTR interrupts.

Single Step Interrupt

The 80286 has an internal interrupt that allows pro-
grams to execute one instruction at atime. It is called the
single step interrupt and is controlled by the single step
flag bit (TF) in the flag word. Once this bit is set, an
internal single step interrupt will occur after the next
instruction has been executed. The interrupt clears the
TF bit and uses an internally supplied vector of 1. The
IRET instruction is used to set the TF bit and transfer
control to the next instruction to be single stepped.

Table 3. Interrupt Vector Assignments

Return Address

interrupt Related Before Instruction
Function Number Instructions Causing Exception?
Divide error exception 0 DIV, IDIV Yes
Single step interrupt 1 All
NMI interrupt 2 All
Breakpoint interrupt 3 INT
INTO detected overflow exception 4 INTO No
BOUND range exceeded exception 5 BOUND Yes
invalid opcode exception 6 Any undefined op-code Yes
Processor extension not available exception 7 ESC or WAIT Yes
Reserved 8-15
Processor extension error input 16 ESC or WAIT
Reserved 17-31
User-detined 32-255

80286 1-79

n AMD

interrupt Priorities

When simultaneous interrupt requests occur, they are
processed in a fixed order as shown in Table 4. interrupt
processing involves saving the flags, return address,
and setting CS:IP to point at the first instruction of the
interrupt handler. If other interrupts remain enabled,
they are processed before the first instruction of the
current interrupt handler is executed. The last interrupt
processed is therefore the first one serviced.

Tabie 4. Interrupt Processing Order

Order interrupt

INT instruction or exception

Single step

NMI

Processor extension segment overrun
INTR

(0 T {&] V] 8

Initialization and Processor Reset

Processor initialization or start up is accomplished by
driving the RESET input pin High. RESET forces the
80286 to terminate all execution and local bus activity.
No instruction or bus activity will occur as long as RE-
SET is active. After RESET becomes inactive and an
internal processing interval elapses, the 80286 begins
execution in real address mode with the instruction at
physical location FFFFFO(H). RESET also sets some
registers to predefined values as shown in Table 5.

Table 5. 80286 Initial Register State after RESET

Machine Status Word Description

The machine status word (MSW) records when a task
switch takes place and controls the operating mode of
the 80286. It is a 16-bit register of which the lower four
bits are used. One bit places the CPU into protected
mode, while the other three bits, as shown in Table 6,
control the processor extension interface. After RESET,
this register contains FFFO(H) which places the 80286
in iAPX 86 real address mode.

The LMSW and SMSW instructions can load and store
the MSW in real address mode. The recommended use
of TS, EM, and MP is shown in Table 7.

Table 6. MSW Bit Functions

Bit

Position | Name | Function

0 PE Protected mode Enable places the
80286 into protected mode and

cannot be cleared except by RESET.

1 MP Monitor Processor extension allows
WAIT instructions to cause a
processor extension not present

exception (number 7).

Emulate processor extension causes
a processor extension not present
exception (number 7) on ESC
instructions to allow emulating a
processor extension.

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOO0(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

Task Switched indicates the next
instruction using a processor
extension will cause exception 7,
allowing software to test whether the
current processor extension context
belongs to the current task.

1-80 80286

AMD n

Table 7. Recommended MSW Encodings For Processor Extension Controt

Instructions
Causing
TS| MP|EM Recommended Use Exception
0 0 0 | iAPX 86 real address mode only. Initial encoding after RESET. 80286 operation is None
identical to iIAPX 86, 88.
0 0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 | A processor extension exists. None
1 1 A processor extension exists. The current processor extension context may belong to ESC or WAIT
another task. The exception on WAIT allows software to test for an error
pending from a previous processor extension operation.
Halt Reserved Memory Locations

The HLT instruction stops program execution and pre-
vents the CPU from using the local bus until restarted.
Either NMI, INTR with IF =1, or RESET will force the
80286 out of halt. If interrupted, the saved CS:IP will
point to the next instruction after the HLT.

iAPX 286 Real Address Mode

The 80286 executes a fully upward-compatible super-
set of the 8086 instruction set in real address mode. In
real address mode the 80286 is object code compatible
with 8086 and 8088 software. The real address mode
architecture (registers and addressing modes) is ex-
actly as described in the 80286 Base Architecture
section.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins Ao
through Aisand BHE. Azo through Azs are ignored.

Memory Addressing

In real address mode the processor generates 20-bit
physical addresses directly from a 20-bit segment base
address and a 16-bit offset.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always zero.
Segment addresses, therefore, begin on multiples of 16
bytes. See Figure 13 for a graphic representation of
address formation.

All segments in real address mode are 64 kbytes in size
and may be read, written, or executed. An exception or
interrupt can occur if data operands or instructions at-
tempt to wrap around the end of a segment (e.g., a word
with its low order byte at offset FFFF(H) and its high
order byte at offset 0000(H)). If, in real address mode,
the information contained in a segment does not use the
full 64 kbytes, the unused end of the segment may be
overlaid by another segment to reduce physical memory
requirements.

The 80286 reserves two fixed areas of memory in real
address mode (see Figure 1): system initialization area
and interrupt table area. Locations from addresses
FFFFO(H) through FFFFF(H) are reserved for system
initialization. Initial execution begins at location FFFF0
(H). Locations 00000(H) through O03FF(H) are re-
served for interrupt vectors.

15 0
Offset
Offset Address
[J
N 7
15 0
Segment 0000 igggﬁgt
N J
4 Y
19 0

20-Bit Physical
Memory Address

03552-12

Figure 13. iAPX 86 Real Address Mode
Address Caicuiation

80286 1-81

n AMD

Reset Bootstrap FFFFFH
Program Jump
JFFFFOH
3FFH
Interrupt Pointer
for Vector 255 3FOH
R . ¥
- 7H
Interrupt Pointer
for Vector 1 4H
Interrupt Pointer 3H
for Vector 0
OH
03552-13

Figure 14. IAPX 86 Real Address Mode Initially
Reserved Memory Locations

Table 8. Real Address Mode Addressing Interrupts

Interrupt Related Return Address
Function Number Instructions Before Instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun interrupt 9 ESC with memory operand extending No
beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with Yes

offset = FFFF(H) or an attempt to
execute past the end of a segment

Interrupts

Table 8 shows the interrupt vectors reserved for excep-
tions and interrupts which indicate an addressing error.
The exceptions leave the CPU in the state existing be-
fore attempting to execute the failing instruction (except
for PUSH, POP, PUSHA, or POPA). Refer to the next
section on protected mode initialization for a discussion
on exception 8.

Protected Mode Initialization

To prepare the 80286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table base
and 16-bit limit for the protected mode interrupt table.
This instruction can also set a base and limit for the
interrupt vector table in real address mode. After reset,
the interrupt table base is initialized to 000000(H) and its
size set to 03FF(H). These values are compatible with
iAPX 86, 88 software. LIDT should only be executed in
preparation for the protected mode.

Shutdown

Shutdown occurs when a severe error is detected that
prevents further instruction processing by the CPU.
Shutdown and halt are externally signaled via a halt bus

operation. They can be distinguished by A1 High for halt
and A1 Low for shutdown. In real address mode, shut-
down can occur under two conditions:

o Exceptions 8 or 13 happen and the IDT limit does
not include the interrupt vector.

o A CALL, INT, or POP instruction attempts to wrap
around the stack segment when SP is not even.

An NM! input can bring the CPU out of shutdown if the
IDT limit is at least 000F(H) and SP is greater than
0005(H); otherwise, shutdown can only be exited viathe
RESET input.

Protected Virtual Address Mode

The 80286 executes a fully upward-compatible super-
set of the 8086 instruction set in protected virtual ad-
dress mode (protected mode). Protected mode also
provides memory management and protection mecha-
nisms and associated instructions.

The 80286 enters protected virtual address mode from
real address mode by setting the PE (Protection Enable)
bit of the machine status word with the Load Machine
Status Word (LMSW) instruction. Protected mode offers

1-82 80286

extended physical and virtual memory address space,
memory protection mechanisms, and new operations to
support operating systems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80286 Base Architecture section remain
the same. Programs for the iAPX 86, 88, 186, and real
address mode 80286 can be run in protected mode;
however, embedded constants for segment selectors
are different.

Memory Size

The protected mode 80286 provides a 1 gigabyte virtual
address space per task mapped into a 16-megabyte
physical address space defined by the address pin
A2-Ae and BHE. The virtual address space may be
larger than the physical address space since any use of
an address that does not map to a physical memory
location will cause a restartable exception.

Memory Addressing

As in real address mode, protected mode uses 32-bit
pointers, consisting of 16-bit selector and offset compo-
nents. The selector, however, specifies an index into a
memory resident table rather than the upper 16 bits of a
real memory address.

The 24-bit base address of the desired segment is ob-
tained from the tables in memory. The 16-bit offset is
addedto the segment base address to form the physical
address as shown in Figure 15. The tables are automati-
cally referenced by the CPU whenever a segment regis-
teris loaded with a selector. All 80286 instructions which
load a segment register will reference the memory-
based tables without additional software. The memory-
based tables contain 8-byte values called descriptors.

CPU

31 1615 0
Pointer Offset
Physical Memory
(254 S
\
. Memory > Segment
Physical d
Address Operan
Adder
Iy
\
Segment Base S " ’IS‘egment
Address scri ip
Descriptor Table
23 0 [
’
= 233
03552-14

Figure 15. Protected Mode Memory Addressing

AvD A
Descriptors

Descriptors define the use of memory. Special types of
descriptors also define new functions for transfer of con-
trol and task switching. The 80286 has segment de-
scriptors for code, stack and data segments, and sys-
tem control descriptors for special system data seg-
ments and control transfer operations. Descriptor ac-
cesses are performed as locked bus operations to as-
sure descriptor integrity in multi-processor systems.

Code and Data Segment Descriptors
(S=1)

Besides segment base addresses, code and data de-
scriptors contain other segment atiributes, including
segment size (1 to 64 kbytes), access rights (read-only,
read/write, execute-only, and execute/read), and pres-
ence in memory (for virtual memory systems) (see Fig-
ure 16). Any segment usage violating a segment attrib-
ute indicate by the segment descriptor will prevent the
memory cycle and cause an exception or interrupt.

7 0 7 0
T
+7 Reserved* +6
Access +6| P|DPL|S] Type | A Baseys ¢ +4
Rights Byte L Lt
+3 Bas?‘,u +2
+1 Umitlvso 0
15 8 7)
03552-15

*Must be set to O for compatibility with iIAPX 386.

Code and data are stored in two types of segments:
code segments and data segments. Both types are
identified and defined by segment descriptors. Code
segments are identified by the executable (E) bit setto 1
in the descriptor access rights byte. The access rights
byte of both code and data segment descriptor types
have three fields in common: present (P) bit, Descriptor
Privilege Level (DPL), and accessed (A) bit. If P =0, any
attempted use of this segment will cause a not-present
exception. DPL specifies the privilege level of the seg-
ment descriptor. DPL controls when the descriptor may
be used by a task (refer to privilege discussion). The A
bit shows whether the segment has been previously
accessed for usage profiling, a necessity for virtual
memory systems. The CPU will aiways set this bit when
accessing the descriptor.

Data segments (S = 1, E = 0) may be either read-only or
read-write as controlied by the W bit of the access rights
byte. Read-only (W = 0) data segments may not be
written into. Data segments may grow in two directions,
as determined by the Expansion Direction (ED) bit: up-
wards (ED = 0) for data segments, and downwards (ED
= 1) for a segment containing a stack. The limit field for a

80286 1-83

n AMD

data segment descriptor is interpreted ditferently de-
pending on the ED bit {see Figure 16).

A code segment (S = 1, E = 1) may be execute-only or
execute/read as determined by the Readable (R) bit.
Code segments may never be written into and execute-
only code segments (R = 0) may not be read. A code
segment may also have an attribute called Conforming
(C). A conforming code segment may be shared by
programs that execute at different privilege levels. The
DPL of a conforming code segment defines the range of
privilege levels at which the segment may be executed
(refer to privilege discussion).

System Segment Descriptors
(S =0, Type 1-3)

In addition to code and data segment descriptors, the
protected mode 80286 defines system segment de-
scriptors. These descriptors define special system data

Access Rights Byte Definition

segments which contain a table of descriptors (Local
Descriptor Table Descriptor) or segments which contain
the execution state of a task (Task State Segment
Descriptor).

Figure 17 gives the formats for the special system data
segment descriptors. The descriptors contain a 24-bit
base address of the segment and a 16-bit limit. The
access byte defines the type of descriptor, its state and
privilege level. The descriptor contents are valid and the
segment is in physical memory if P=1.lf P=0, the seg-
ment is not valid. The DPL field is only used in Task
State Segment descriptors and indicates the privilege
level at which the descriptor may be used (see Privi-
lege). Since the Local Descriptor Table descriptor may
only be used by a special privileged instruction, the DPL
field is not used. Bit 4 of the access byte is 0 to indicate
that it is a system control descriptor. The Type field
specifies the descriptor type as indicated in Figure 17.

Bit
Position Name Function

7 Present (P) P=1 Segmentis mapped into physical memory.

P=0 No mapping to physical memory exists; base and limit are
not used. Segment privilege attribute used in privilege tests.
6-5 Descriptor Privilege
Level (DPL)

4 Segment Descriptor (S} S=1 Code or Data segment descriptor
S=0 Non-segment descriptor

3 Executable (E) E=0 Data segment descriptor type is:

2 Expansion Direction ED =0 Grow up segment, offsets must be < limit.

(ED) ED =1 Grow down segment, offsets must be > limit. | Data

1 Writable (W) W=0 Data segment may not be written into. Segment

W=1 Data segment may be written into. .
He':: 3 Executable (E) E=1 Code Segment Descriptor type is: —_
Definition 2 Conforming (C) C=1 Code segment may only be executed when
CPL>DPL. | Code

1 Readable (R) R=0 Code segment may not be read. Segment
R=1 Code segment may be read. .

0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segmant selector has been loaded into segment register

or used by selector test instructions.

Figure 16. Code and Data Segment Descriptors

1-84

80286

AMD n

System Segment Descriptor

0 T z i
7 Reserved* +8
+5| P|DPL 0] Type Basess« +4
1 | |
+3 Baseisq +2
1
+1 Limitys.o [+]
1
15 8 7 [

*Must be set to 0 for compatibility with iIAPX 386.
03552-16

System Segment Descriptor Fields

Name Value Description
Type 0 Invalid Descriptor
1 Available Task State Segment
2 Local Descriptor Table Descriptor
3 Busy Task State Segment
47 Control Descriptor
8 Invalid Descriptor
9-F Reserved
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
Base 24-bit Base Address of special system data
number segment in real memory
Limit 16-bit Offset of last byte in segment

number

Figure 17. System Segment Format

Gate Descriptors
(S=0, Type =4-7)

Gates are used to control access to entry points within
the target code segment. The gate descriptors are call
gates, task gates, interrupt gates and trap gates. Gates
provide a level of indirection between the source and
destination of the control transfer. This indirection al-
lows the CPU to automatically perform protection
checks and control the entry point of the destination.
Call gates are used to change privilege levels (see Privi-
lege); task gates are used to perform a task switch; and
interrupt and trap gates are used to specify interrupt
service routines. The interrupt gate disables interrupts
(resets IF) while the trap gates does not.

Figure 18 shows the format of the gate descriptors. The
descriptor contains a destination pointer that points to
the descriptor of the target segment and the entry point
offset. The destination selector in an interrupt gate, trap

gate, and call gate must refer to a code segment de-
scriptor. These gate descriptors contain the entry point
to prevent a program from constructing and using an
illegal entry point. Task gates may only refer to a task
state segment. Since task gates invoke a task switch,
the destination offset is not used in the task gate.

Exception 13 is generated when the gate is used if a
destination selector does not refer to the correct de-
scriptor type. The Word Count field is used in the call
gate descriptor to indicate the number of parameters
(0-31 words) to be automatically copied from the call-
er's stack to the stack of the called routine when a con-
trol transter changes privilege levels. The Word Count
field is not used by any other gate descriptor.

Gate Descriptor

7 o 7 0
I
+7 Reserved* +6
«siplopLfo| Type |x x x| Herd a
-0
1 111 P 1
+3 Destination Selector s, XIX 42
1
1 Des!inaliorli Offset 154 0
1 87 9 0355217

*Must be set to 0 for compatibility with iIAPX 386.

Gate Descriptor Fields

Name Value Description
Type 4 Call Gate
5 Task Gate
6 Interrupt Gate
7 Trap Gate
P 0 Descriptor Contents are not valid
1 Descriptor Contents are valid
DPL 0-3 Descriptor Privilege Level
Word 0-31 Number of words to copy from
Count callers stack to called procedures

stack. Only used with call gate.

Destination 16-bit
segment
Selector

Selector to the target code

selector (Call, Interrupt or Trap Gate)
Selector to the target task state
segment (Task Gate)

Destination 16-bit
Offset offset

Entry point within the target
code segment

Figure 18. Gate Descriptor Format

80286 1-85

n AMD

The access byte format is the same for all gate descrip-
tors. P = 1 indicates that the gate contents are valid. P =
0 indicates the contents are not valid and causes excep-
tion 11 if referenced. DPL is the Descriptor Privilege
Level and specifies when this descriptor may be used by
a task (refer to privilege discussion). Bit 4 must equal 0
to indicate a system control descriptor. The Type field
specifies the descriptor type as indicated in Figure 18.

Segment Descriptor Cache Registers

A segment descriptor cache register is assignedto each
of the four segment registers (CS, SS, DS, ES). Seg-
ment descriptors are automatically loaded (cachedy) into
a segment descriptor cache register {(Figure 20) when-
ever the associated segment register is loaded with a
selector. Only segment descriptors may be loaded into
segment descriptor cache registers. Once loaded, all
references to that segment of memory use the cached
descriptor information instead of reaccessing memory.
The descriptor cache registers are not visible to pro-
grams. No instructions exist to store their contents. They
only change when a segment register is loaded.

Selector Fields

A protected mode selector has three fields: descriptor
entry index, local or global descriptor table indicator (T1),

and selector privilege (RPL), as shown in Figure 19.
These fields select one of two memory-based tables of
descriptors, select the appropriate table entry, and allow
high-speed testing of the selector’s privilege attribute
(refer to privilege discussion).

Selector
Index T PRL
1] 1 1 1 i 1 1 1 1 1 1]
15 8 7 210
Bits Name Function

1-0 Requested
Privilege Level (RPL)

Indicates Selector Privilege
Level Desired

2 Table Ti=0 Use Global
Indicator (T1) Descriptor Table
(GDT)
Ti=1 Use Local Descriptor
Table (LDT)
15-3 Index Select Descriptor Entry in
Table

Figure 19. Selector Fields

PROGRAM VISIBLE [~~~ PROGRAMINVISIBLE — 1
Segment Selectors Rights Segment Base Address ~ Segment Size :

cs |
| I

oS | |
SS :
ES [
15 0 47 40 39 16 15 o |
Segment Registers Segment Descriptor Cache Registers |
{Loaded by Program) L (Loaded by CPU) J

03552-18

Figure 20. Descriptor Cache Registers

1-86

80286

AMD a

Local and Global Descriptor Tables

Two tables of descriptors, called descriptor tables, con-
tain all descriptors accessible by a task at any given
time. A descriptor table is a linear array of up to 8192
descriptors. The upper 13 bits of the selector value are
an index into a descriptor table. Each table has a 24-bit
base register to locate the descriptor table in physical
memory and a 16-bit limit register that confines descrip-
tor access to the defined limits of the table as shown in
Figure 21. A restartable exception (13) will occur if an
attempt is made to reference a descriptor outside the
table limits.

One table, called the Global Descriptor Table (GDT),
contains descriptors available to all tasks. The other
table, called the Local Descriptor Table (LDT), contains
descriptors that can be private to a task. Each task may
have its own private LDT. The GDT may contain all
descriptor types except interrupt and trap descriptors.
The LDT may contain only segment, task gate, and cail
gate descriptors. A segment cannot be accessed by a
task if its segment descriptor does not exist in either
descriptor table at the time of access.

The LGDT and LLDT instructions load the base and
limit of the global and local descriptor tables. LGDT and

LLDT are protected. They may only be executed by
trusted programs operating at level 0. The LGDT in-
struction loads a six-byte field containing the 16-bit table
limit and 24-bit base address of the Global Descriptor
Table as shown in Figure 22. The LLDT instruction loads
a selector which refers to a descriptor in the Local De-
scriptor Table. This descriptor contains the base ad-
dress and limit for an LDT, as shown in Figure 21.

interrupt Descriptor Table

The protected mode 80286 has a third descriptor table,
called the Interrupt Descriptor Table (IDT) (see Figure
23), used to define up to 256 interrupts. It may contain
onlytask gates, interrupt gates andtrap gates. The IDT
(Interrupt Descriptor Table) has a 24-bit base and 16-bit
limit register in the CPU. The protected LIDT instruction
loads these registers with a six-byte value of identical
form to that of the LGDT instruction (see Figure 22 and
Protected Mode Initialization).

References to IDT entries are made via INT instructions,
external interrupt vectors, or exceptions. The IDT must
be at least 256 bytes in size to allocate space for all
reserved interrupts.

' Memory A2
CPU
.
15 0 - o GDT
23 FEDT Limit d
GDT Base
15 0 LDT,
LDT "
Selector
L]
o —— e - . Current
| 15 0 . LDT
| 3 [LOTLimit H
: LDT Base : r LDT
| l =
| Program Invisible |
b e e e 4 *
.

[a
n

- [a.
\.s (o

U
- 03552-19

Figure 21, Local and Global Descriptor Table Definitions

80286

1-87

a AMD

7 0 7 0
+5 Reserved" Base,,, [+4
+3 Base,, +2
+1 Lij“'s-o 0
15 8 7 0
03552-20

*Must be set to 0 for compatibility with IAPX 386.

Figure 22. Global Descriptor Tabile and Interrupt
Descriptor Data Types

A "
o Memory a

Gate for
Interrupt #n

Gate for
Interrupt #n—1

—~ (¢

. $ Interrupt

. Descriptor
CPU ° Table

15) (D7)

IDT Limit

Gate for
Interrupt #1
Gate for
Interrupt #0 /

IDT Base
23 0

p >

(o}
~ !

03552-21
Figure 23. Interrupt Descriptor Table Definition

Privilege

The 80286 has afour-level hierarchical privilege system
which controls the use of privileged instructions and
access to descriptors (and their associated segments)
within a task. Four-level privilege, as shown in Figure
24, is an extension of the user/supervisor mode com-
monly found in minicomputers. The privilege levels are
numbered 0 through 3. Level 0 is the most privileged
level. Privilege levels provide protection within a task.
(Tasks are isolated by providing private LDT’s for each
task.) Operating system routines, interrupt handlers,
and other system software can be included and pro-
tected within the virtual address space of each task
using the four levels of privilege. Tasks may also have a
separate stack for each privilege level.

Tasks, descriptors, and selectors have a privilege level
attribute that determines whether the descriptor may be
used. Task privilege effects the use of instructions and
descriptors. Descriptor and selector privilege only effect
access to the descriptor.

Task Privilege

The task always executes at one of the four privilege
leveis. A task privilege level at any specific instant is
called the Current Privilege Level (CPL) and is defined
by the lower two bits of the CS register. CPL cannot

change during execution in a single code segment. A
task's CPL may only be changed by controt transfers
through gate descriptors to a new code segment (See
Control Transfer). Tasks begin executing at the CPL
value specified by the code segment when the task is
initiated via a task switch operation. A task executing at
Level 0 can access all data segments defined in the
GDT and the task’s LDT and is considered the most
trusted level. A task executed at Level 3 has the most
restricted access to data and is considered the least
trusted level.

Descriptor Privilege

Descriptor privilege is specified by the Descriptor Privi-
lege Level (DPL)field of the descriptor access byte. DPL
specifies the least trusted privilege level (CPL) at which
a task may access the descriptor. Descriptors with
DPL =0 are the most protected. Only tasks executing at
privilege level 0 (CPL =0) may access them. Descrip-
tors with DPL =3 are the least protected (i.e., have the
least restricted access) since tasks can access them
when CPL=0, 1, 2, or 3. This rule applies to all descrip-
tors, except LDT descriptors.

Selector Privilege

Selector privilege is specified by the Requested Privi-
lege Level (RPL) field in the least significant two bits of a
selector. Selector RPL may establish a less trusted
privilege level than the current privilege level for the use
of a selector. This level is called the task’s effective
privilege level {(EPL). RPL can only reduce the scope of
atask’s access to data with this selector. Atask’s effec-
tive privilege is the numeric maximum of RPL and CPL.
A selectorwith RPL = 0 imposes no additional restriction
on its use while a selector with RPL = 3 can only refer to
segments at privilege Level 3 regardless of the task’s

Applications

CPU
Enforced
Software
Interfaces

OS Extensions

System
Services

High-Speed
Operating
System
interface

03552-22

Figure 24. Hierarchical Privilege Levels

1-88

80286

AMD n

CPL. RPL is generally used to verify that pointer pa-
rameters passed to a more trusted procedure are not
allowed to use data at a more privileged level than the
caller (refer to pointer testing instructions).

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a segment
involves the type of segment to be accessed, the in-
struction used, the type of descriptor used and CPL,
RPL, and DPL. The two basic types of segment ac-
cesses are control transfer (selectors loaded into CS)
and data (selectors loaded into DS, ES, or SS).

Data Segment Access

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code
segment descriptor. The CPL of the task and the RPL of
the selector must be the same as or more privileged
(numerically equal to or lower than) than the descriptor
DPL. In general, a task can only access data segments
at the same or less privileged levels than the CPL or
RPL (whichever is numerically higher) to prevent a pro-
gram from accessing data it cannot be trusted to use.

An exception to the rule is a readable conforming code
segment. This type of code segment can be read from
any privilege level.

I the privilege checks fail (e.g., DPL is numerically less
thanthe maximum of CPL and RPL) or anincorrect type
of descriptor is referenced (e.g., gate descriptor or exe-
cute only code segment}, exception 13 occurs. If the
segment is not present, exception 11 is generated.

Instructions that load selectors into SS must refer to
data segment descriptors for writable data segments.
The descriptor privilege (DPL) and RPL must equal
CPL.

All other descriptor types or privilege level violation
will cause exception 13. A not-present fault causes
exception 12,

Control Transfer

Four types of controt transfer can occur when a selector
is loaded into CS by a control transfer operation (see
Table 9). Each transfer type can only occur if the opera-
tion which loaded the selector references the correct
descriptor type. Any violation of these descriptor usage
rules (e.g., JMP through a call gate or RET to a Task
State Segment) wili cause exception 13.

The ability to reference a descriptor for controi transfer
is also subject to rules of privilege. A CALL or JUMP
instruction may only reference a code segment descrip-
tor with DPL equal to the task CPL or a conforming
segment with DPL of equal or greater privilege than
CPL. The RPL of the selectorusedto reference the code
descriptor must have as much privilege as CPL.

RET and {RET instructions may only reference code
segment descriptors with descriptor privilege equaltoor
less privileged than the task CPL. The selector loaded
into CS is the retum address from the stack. After the
return, the selector RPL is the task's new CPL. If CPL
changes, the old stack pointer is popped after the return
address.

When a JMP or CALL references a Task State Segment
descriptor, the descriptor DPL must be the same or less
privileged than the task's CPL. Reference to a valid
Task State Segment descriptor causes a task switch
(see Task Switch Operation). Reference to a Task State
Segment descriptor at a more privileged level than the
task's CPL generates exception 13.

When an instruction or interrupt references a gate de-
scriptor, the gate DPL must have the same or less privi-
lege than the task CPL. If DPL is at a more privileged
level than CPL, exception 13 occurs. If the destination

Table 9. Descriptor Types Used for Control Transfer

Descriptor Descriptor
Control Transfer Types Operation Types Referenced Table

Intersegment within the same privilege level JMP, CALL, RET, IRET* Code Segment GDT/DT
Intersegment to the same or higher privilege level CALL Call Gats GDTADT
Interrupt within task may change CPL Interrupt Instruction, Trap or Interrupt DT

Exception, External Gate

Interrupt
Intersegment to a lower privilege level (changes task CPL)| RET, IRET* Code Segment GDTADT
Task Switch CALL, JMP Task State Segment GDT

CALL, JMP Task Gate GDT/LDT

IRET**

Interrupt Instruction, Task Gate IDT

Exception, External
Interrupt

* NT (Nested Task bit of flag word)=0
** NT (Nested Task bit of flag word) =1

80286

1-89

a AMD

selector contained in the gate references a code seg-
ment descriptor, the code segment descriptor DPL must
be the same or more privileged than the task CPL. If not,
Exception 13 is issued. After the control transfer, the
code segment descriptor DPL is the task’s new CPL. If
the destination selector in the gate references a task
state segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

— JMP or CALL direct to a code segment (code
segment descriptor) can only be to a conforming
segment with DPL of equal or greater privilege than
CPL or a non-conforming segment at the same
privilege level.

— interrupts within the task or calls that may change
privilege levels can only transfer control through a
gate at the same or a less privileged level than CPL
to a code segment at the same or more privileged
level than CPL.

— return instructions that don't switch tasks can only
return control to a code segment atthe same or less
privileged level.

— taskswitchcanbe performed by acall, ajumporan
interrupt which references either a task gate or task
state segment at the same or less privileged level.

Privilege Level Changes

Any control transfer that changes CPL within the task
causes a change of stacks as part of the operation.
Initial values of SS:SP for privilege levels 0, 1, and 2 are
kept in the task state segment (refer to Task Switch
Operation). During a JMP or CALL control transfer, the
new stack pointer is loaded into the SS and SP registers
and the previous stack pointer is pushed onto the new
stack.

When returning to the original privilege level, its stack is
restored as part of the RET or IRET instruction opera-
tion. For subroutine calls that pass parameters on the
stack and cross privilege levels, a fixed number of
words, as specified in the gate, are copied from the
previous stack to the current stack. The intersegment
RET instruction with a stack adjustment value will cor-
rectly restore the previous stack pointer upon return.

Protection

The 80286 includes mechanisms to protect critical in-
structions that affect the CPU execution state (e.g.,
HLT) and code or data segments from improper usage.
These mechanisms are grouped under the term “protec-
tion” and have three forms:

* Restricted usage of segments (e.g., no write
allowed to read-only data segments). The only
segments available for use are defined by

descriptors in the Local Descriptor Table (LDT) and
Gilobal Descriptor Table (GDT).

¢ Restricted access to segments via the rules of
privilege and descriptor usage.

¢ Privileged instructions or operations that may only
be executed at certain privilege levels as
determined by the CPL and 1O Privilege Level
(IOPL). The IOPL is defined by bits 14 and 13 of the
flag word.

These checks are performed for all instructions and can
be split into three categories: segment load checks {Ta-
ble 10), operand reference checks (Table 11), and privi-
leged instruction checks (Table 12). Any violation of the
rules shown will result in an exception. A not-present
exception related to the stack segment causes
exception 12.

The IRET and POPF instructions do not perform some
of their defined functions if CPL is not of sufficient privi-
lege (numerically small enough). Precisely, these are:

e The IF bit is not changed if CPL > IOPL.
e The IOPL field of the flag word is not changed it
CPL>0.

No exceptions or other indication are given when these
conditions occur.

Table 10. Segment Register Load Checks

Exception
Error Description Number
Descriptor table limit exceaded 13
Segment descriptor not present 11or12
Privilege rules violated 13

Invalid descriptor/segment type segment
register load:
— Read only data segment load to SS
— Special control descriptor load to DS,
ES, SS 13
— Execute only segment load to DS, ES,
sS

— Data segment load to CS
— Read/Execute code segment load
to SS

Table 11. Operand Reference Checks

Exception
Error Description Number
Write into code segment 13
Read from execute-only code segment 13
Write to read-only data segment 13
Segment limit exceeded! 120r 13

Note: Carry out in offset calculations is ignored.

1-90 80286

AMD n

Table 12. Privileged Instruction Checks

Exception
Error Description Number
CPL =0 when executing the following
instructions: 13
LIDT, LLDT, LGDT, LTR, LMSW,
CTS, HLT

CPL > IOPL when executing the following
instructions: 13
INS, IN, OUTS, OUT, STi, CLI, LOCK

Exceptions

The 80286 detects several types of exceptions and in-
terrupts in protected mode (see Table 13). Most are
restartable after the exceptional condition is removed.
Interrupt handlers for most exceptions receive an error
code, pushed on the stack after the return address, that
identifies the selector involved (0 if none). The return
address normally points to the failing instruction, includ-
ing alf leading prefixes. For a processor extension seg-
ment overrun exception, the return address will not point
at the ESC instruction that caused the exception; how-
ever, the processor extension registers may contain the
address of the failing instruction.

Special Operations
Task Switch Operation

The 80286 provides a built-in task switch operation
which saves the entire 80286 execution state (registers,
address space, and a link to the previous task), loads a
new execution state, and commences execution in the
new task. Like gates, the task switch operation is in-
voked by executing an inter-segment JMP or CALL in-
struction which refers to a Task State Segment (TSS) or

task gate descriptorinthe GDTorLDT. AnINT ninstruc-
tion, exception, or external interrupt may also invoke the
task switch operation by selecting a task gate descriptor
in the associated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure 25)
containing the entire 80286 execution state while a task
gate descriptor contains a TSS selector. The limit field
must be > 002B(H).

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80286 called the Task Register (TR). This register con-
tains a selector referring to the task state segment de-
scriptor that defines the current TSS. A hidden base and
limit register associated with TR are loaded whenever
TR is loaded with a new selector.

The IRET instruction is used to return controt to the task
that called the current task or was interrupted. Bit 14 in
the tlag register is called the Nested Task(NT) bit. It
controls the function of the IRET instruction. if NT=0,
the IRET instruction performs the regular current task
return; whenNT =1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL or INT instruction initiates a task switch,
the old and new TSS will be marked busy and the back
link field of the new TSS set to the old TSS selector. The
NT bit of the new task is set by CALL or INT initiated task
switches. An interrupt that does not cause a task switch
willclear NT. NT may also be set or cleared by POPF or
IRET instructions.

The task state segment is marked busy by changing the
descriptor type field from Type 1 to Type 3. Use of a
selector that references a busy task state segment
causes Exception 13.

Table 13. Protected Mode Exceptions

Return Address Error
Interrupt At Failing Always Code
Vector Function Instruction? Restartable? on Stack?

8 Double exception detected Yes No2 Yes

9 Processor extension segment overrun No Noz No

10 Invalid task state segment Yes Yes Yes

1 Segment not present Yes Yes Yes

12 Stack segment overrun or segment not present Yes Yes! Yes

13 General protection Yes No? Yes

Notes:

1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception
will not be restartable because stack segment wraparound is not permitted. This condition is identified by the value of the
saved SP being either 0000(H}), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted

under those conditions.

3. Allthese checks are performed for all instructions and can be split into three categories: Segment Load Checks (Table
10), Operand Reference Checks (Table 11), and Privileged Instruction Checks (Table 12). Any violation of the rules
shown will result in an exception. A not-present exception causes exception 11 or 12 and is restartable.

80286 1-91

n AMD

Type

Description

An Available Task State
Segment. May be used as
the Destination of a Task
Switch Operation.

A Busy Task State
Segment. Cannot be used
as the Destination of a
Task Switch.

Description

Base and Limit Fields are Valid.

Segment is not Present in Memory,
Base and Limit are not defined.

» Task
State

Initial

A A
4
CPU Reserved
1
Task Register D
0 plr|oftye]| Base..
System L 1
TR ™ Do {
15 0 Base 150
r— e A 1 !
| Program Invisible | Limit 45 I
| 15 0 |
' I . I l
[tmt | _JI
I S g S — -
| Base |
| o™ |
{ NN P N A ¥
Byte
15 o] Offset
Task LDT Selector 42
\
DS Selector 40
SS Selector 38
CS Selector 36
ES Selector 34
DI 32
S1 30
8P 28
sP 26
BX 24
Task DX 22
- State ¢
Segment CX 20
AX 18
Flag Word 16
IP (Entry Point} 14
SSfor CPL 2 12 ‘
SPfor CPL 2 10
SS for CPL 1 8
SP for CPL 1 6
SSforCPLO 4
SPfor CPLO 2 J
Back Link Selector to TSS 4]
2 [

Current

» Stacks
forCPLO, 1,2

03552-23

Figure 25. Task State Segment and TSS Registers

1-92

80286

AMD a

Processor Extension Context Switching

The context of a processor extension is not changed by
the task switch operation. A processor extension con-
text need only be changed when a different task at-
tempts to use the processor extension (which still con-
tains the context of a previous task). The 80286 detects
the first use of a processor extension after a task switch
by causing the processor extension not present excep-
tion (7). The interrupt handler may then decide whether
a context change is necessary.

Whenever the 80286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a proc-
essor extension context may belong to a different task
than the current one. The processor extension not pre-
sent exception (7) will occur when attempting to execute
an ESC or WAIT instruction if TS=1 and a processor
extension is present (MP =1 in MSW),

Pointer Testing Instructions

The 80286 provides several instructions to speed
pointer testing and consistency checks for maintaining
system integrity (see Table 14). These instructions use
the memory management hardware to verify that a se-
lector value refers to an appropriate segment without
risking an exception. A condition flag indicates whether
use of the selector or segment will cause an exception.

Table 14. Pointer Test Instructions

Instruction Operands Function
ARPL Selector, Adjust Requested Privilege
Register Level: adjusts the RPL of the
selector to the numeric maxi-
mum of current selector RPL
value and the RPL value inthe
register. Set zero flag if selec-
Selector tor RPL was changed.
VERR VERify for Read: sets the zero
flag is the segment referred to
Selector by the selector can be read.
VERW . VERify for Write: sets the zero
Register, flag if the segment referred to
Selector

by the selector can be written.

LSL Load Segment Limit: reads
the segment limit into the reg-
ister if privilege rules and de-
scriptor type allow. Set zero
flag if successful.

LAR , Load Access Rights: reads
Register, the descriptor access rights
Selector byte into the register if privi-
lege rules allow. Set zero
tlag if successful.

Double Fault and Shutdown

if two separate exceptions are detected during a single
instruction execution, the 80286 performs the double
fault exception (8). If an exception occurs during proc-
essing of the double fault exception, the 80286 will enter

shutdown. During shutdown no further instructions or
exceptions are processed. Either NMI (CPU remains in
protected mode) or RESET (CPU exits protected mode)
canforce the 80286 out of shutdown. Shutdown is exter-
nally signaled via a HALT bus operation with A« High.

Protected Mode Initialization

The 80286 initially executes in real address mode after
RESET. To allow initialization code to be placed at the
top of physical memory, Azs-20 will be High when the
80286 performs memory references relative to the CS
register, until CS is changed. Az-20 will be zero for refer-
ences 1o the DS, ES, or SS segments. Changing CS in
real address mode will force Azs-20 Low whenever using
CS thereafter. The initial CS:IP value of FFOO:FFFO
provides 64K bytes of code space for initialization code
without changing CS.

Before placing the 80286 into protected mode, several
registers must be initialized. The GDT and IDT base
registers must refer to a valid GDT and IDT. After exe-
cuting the LMSW instruction to set PE, the 80286 must
immediately execute an intrasegment JMP instruction
to clear the instruction queue of instructions decoded in
real address mode.

To force the 80286 CPU registers to match the initial
protected mode state assumed by software, execute a
JMP instruction with a selector referring to the initial
TSS used in the system. This will load the task register,
local descriptor table register, segment registers and
initial general register state. The TR should point at a
valid TSS since a task switch operation involves saving
the current

System Interface

The 80286 system interface appears in two forms: a
local bus and a system bus. The local bus consists of
address, data, status, and control signals at the pins of
the CPU. A system bus is any buffered version of the
local bus. A system bus may also differ from the local
bus in terms of coding of status and control lines and/or
timing and loading of signals. The 80286 family includes
several devices to generate standard system buses
such as the IEEE 796 Standard MULTIBUS.

Bus Interface Signals and Timing

The 80286 microsystem local bus interfaces the 80286
1o local memory and I/O components. The interface has
24 address lines, 16 data lines, and 8 status and control
signals.

The 80286 CPU, 82284 clock generator, 82C288 bus
controller, 82289 bus arbiter, 8286/7 transceivers, and
8282/3 latches provide a buffered and decoded system
bus interface. The 82284 generates the system clock
and synchronizes READY and RESET. The 82C288
converts bus operation status encoded by the 80286
into command and bus control signals. These compo-
nents can provide the timing and electrical power drive
levels required for most system bus interfaces including
the MULTIBUS.

80286 1-93

n AMD

Physical Memory and I/O Interface

A maximum of 16 megabytes of physical memory can
be addressed in protected mode. One megabyte can be
addressed in real address mode. Memory is accessible
as bytes or words. Words consist of any two consecutive
bytes addressed with the least significant byte stored in
the lowest address.

Byte transfers occur on either half of the 16-bit local data
bus. Even bytes are accessed over D7-owhile odd bytes
are transferred over Dis-s. Even-addressed words are
transferred over Diso in one bus cycle, while odd-ad-
dressed words require two bus operations. The first
transfers data on Dis-s, and the second transfers dataon
D7—o. Both byte data transfers occur automatically,
transparent to software.

Two bus signals, Ao and BHE, control fransfers over the
lower and upper halves of the data bus. Even address
byte transfers are indicated by Ao Low and BHE High.
Odd address byte transfers are indicated by Ao High and
BHE Low. Both Ac and BHE are Low for even ad-
dress word transfers.

The I/O address space contains 64K addresses in both
modes. The I/O space is accessible as either bytes or
words, as is memory. Byte-wide peripheral devices may
be attached to either the upper or lower byte of the data
bus. Byte-wide /O devices attached to the upper data
byte (Diss) are accessed with odd /O addresses.
Devices on the lower data byte are accessed with even
I/O addresses. Aninterrupt controller such as the 8259A
must be connected to the lower data byte {D:-o0) for
proper return of the interrupt vector.

Bus Operation

The 80286 uses a double-frequency system clock (CLK
input) to control bus timing. All signals on the local bus
are measured relative to the system CLK input. The
CPU divides the system clock by 2 to produce the inter-
nal processor clock, which determines bus state. Each
processor clock is composed of two system clock cycles
named phase 1andphase 2. The 82284 clock generator
output (PCLK) identifies the next phase of the processor
clock. (See Figure 26.)

Six types of bus operations are supported: memory
read, memory write, 1/O read, I/O write, interrupt ac-
knowledge, and halt/shutdown. Data can be transterred
at a maximum rate of one word per two processor clock
cycles.

The 80286 bus has three basic states: idie (Ti), send
status (Ts), and perform command (Tc). The 80286 CPU
also has a fourth local bus state calied hold (Tn). Tn
indicates that the 80286 has surrendered control of the
local bus to another bus master in response to a HOLD
request.

Each bus state is one processor clock long. Figure 27
shows the four 80286 local bus states and allowed
transitions.

Bus States

The idle (Ti) state indicates that no data transfers are in
progress or requested. The first active state, Ts, is sig-
naled by either status line S1 or S0 going Low also
identitying phase 1 of the processor clock. During Ts, the
command encoding, the address, and data (for a write
operation) are available on the 80286 output pins. The
82C288 bus controller decodes the status signals and
generates MULTIBUS-compatible read/write command
and local transceiver control signals.

After Ts, the perform command (Tc) state is entered.
Memory or I/O devices respond to the bus operation
during Tc, either transferring read data to the CPU or
accepting write data. Tc states may be repeated as often
as necessary to assure sufficient time for the memory or
/O device to respond. The READY signal determines
whether Tc is repeated. A repeated Tc state is called a
wait state.

During hold (Th), the 80286 will float all address, data,
and status output pins, enabling another bus master to
use the local bus. The 80286 HOLD input signal is used
to place the 80286 into the Tn state. The 80286 HLDA
output signal indicates that the CPU has entered Th.

Pipelined Addressing

The 80286 uses a local bus interface with pipelined
timing to allow as much time as possible for data access.

Clock Cycle
CLK

le——— One Processor Clock Cycle ~———-
j¢~————— One Bus T State ——————a

Phase 1
la— of Processor—+— of Processor —m

One System
’ ¢ Clock Cycle
PCLK /

Phase 2

Clock Cycle

N~/

03552-24

Figure 26. System and Processor Clock Relationships

1-94 80286

AMD n

HALDA - NEWCYCLE

NEW CYCLE

ALWAYS

READY - NEWCYCLE 03552-25

Figure 27. 80286 Bus States

Pipelined timing allows bus operations to be performed
in two processor cycles, while allowing each individual
bus operation to last for three processor cycles.

The timing of the address outputs is pipelined such that
the address of the next bus operation becomes avail-
able during the current bus operation. Or in other words,
the first clock of the next bus operation is overlapped
with the last clock of the current bus operation. There-
fore, address decode and routing logic can operate in

advance of the next bus operation. External address
latches may hold the address stable for the entire bus
operation and provide additional AC and DC buffering.

The 80286 does not maintain the address of the current
bus operation during all Tc states. Instead, the address
for the next bus operation may be emitted during phase
2 of any Te. The address remains valid during phase 1 of
the first Tc to guarantee hold time, relative to ALE, for
the address latch inputs.

Read Cycle N

Read Cycle N + 1

T '-——1— Ts

CLK

| T T__—-|
| ¥ 2 | 0 2

Proc CLK
je—2 Clock Cycle Transfer 2 Clock Cyc:e Transfer
/ 2.5 Clock Cycle Address o Data Valid
AA, Valid Addr (N) [Vaiid Addr (N+1) |

\

N

)

Pipelining: valid address (N + 1) available in last phase of bus cycle (N).

Valid Read Valid Read
Data (N) Data(N + 1)
03552-26

Figure 28. Basic Bus Cycle

80286 1-95

n AMD

Bus Control Signals

The 82C288 bus controller provides control signals: ad-
dress latch enable (ALE), Read/Write commands, data
transmit/receive (DT/R), and data enable (DEN) that
control the address latches, data transceivers, write en-
able, and output enable for memory and /O systems.

The Address Latch Enable (ALE) output determines
when the address may be latched. ALE provides at least
one system CLK period of address hold time from the
end of the previous bus operation until the address for
the next bus operation appears at the latch outputs. This
address hold time is required to support MULTIBUS and
common memory systems.

The data bus transceivers are controlled by 82C288
outputs Data Enable (DEN) and Data Transmit/Receive
(DT/R). DEN enables the data transceivers while DT/R
controls transceiver direction. DEN and DT/R are timed
to prevent bus contention between the bus master, data
bus transceivers, and system data bus transceivers.

Command Timing Controls

Two system timing customization options, command
extension and command delay, are provided on the
80286 local bus.

Command extension allows additional time for external
devices to respond to a command and is analogous to
inserting wait states on the 80286. External logic can
control the duration of any bus operation such that the
operation is only as long as necessary. The READY
input signal can extend any bus operation for as long as
necessary.

Command delay allows an increase of address or write
data set-up time to system bus command active for any
bus operation by delaying when the system bus com-
mand becomes active. Command delay is controlled by
the 82C288 CMDLY input. After Ts, the bus controller
samples CMDLY at each failing edge of CLK. If CMDLY
is High, the 82C288 will not activate the command sig-
nal. When CMDLY is Low, the 82C288 will activate the
command signal. After the command becomes active,
the CMDLY input is not sampled.

When a command is delayed, the available response
time from command active to return read data or accept
write data is less. To customize system bus timing, an
address decoder can determine which bus operations
require delaying the command. The CMDLY input does
not affect the timing of ALE, DEN, or DT/R.

Figure 29 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system CLKs for
cycle N-1 and no delay for cycle N, and example 2
shows delaying the read command one system CLK for
cycle N—1 and one system CLK delay for cycle N.

Bus Cycle Termination

At maximum transfer rates, the 80286 bus alternates
between the status and command states. The bus
status signals become inactive after Ts so that they
may correctly signal the start of the next bus operation
after the completion of the current cycle. No external
indication of Tc exists on the 80286 local bus. The bus
master and bus controller enter Tc directly after Ts and
continue executing Tc cycles until terminated by
READY.

1-96 80286

Read Cycle N.—1

AMD lrl
Read Cycle N
. T,
1

e T —-‘Tz

Valid Addr N-1/

Valid Addr N /] X

=

/

) (\/ /

|
PRV AN

|
m \

/
(
\?X_—

/

EX2

m /
CMDLY

NN
)

03552-27

Figure 29. CMDLY Controls and Leading Edge of the Command

READY Operation

The current bus master and 82C288 bus controller ter-
minate each bus operation simultaneously to achieve
maximum bus bandwidth. Both are informed in advance
by READY active which identities the last Tc cycle of the
current bus operation. The bus master and bus control-
ler must see the same sense of the READY signal,
thereby requiring READY be synchronous to the system
clock.

Synchronous Ready

The 82284 clock generator provides READY synchroni-
zation from both synchronous and asynchronous
sources (see Figure 30). The synchronous ready input
(SRDY) of the clock generator is sampled with the falling
edge of CLK at the end of phase 1 of each Tc. The state
of SRDY is then broadcast to the bus master and bus
controller via the READY output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to meet the 82284
SRDY set-up and hold time requirements. The 82284

asynchronous ready input {ARDY) is designed to accept
such signals. The ARDY input is sampled at the begin-
ning of each Tc cycle by 82284 synchronization logic.
This provides a system CLK cycle time to resolve its
value before broadcasting it to the bus master and bus
controller.

ARDY or ARDYEN must be High at the end of Ts. ARDY
cannot be used to terminate bus cycle with no wait
status.

Each ready input of the 82284 has an enable pin
(SRDYEN and ARDYEN) to select whether the current
bus operation will be terminated by the synchronous or
asynchronous ready. Either of the ready inputs may
terminate a bus operation. These enable inputs are ac-
tive low and have the same timing as their respective
ready inputs. Address decode logic usually selects
whether the current bus operation should be terminated
by ARDY or SRDY.

Data Bus Control

Figures 31, 32, and 33 show how the DT/R, DEN, data
bus, and address signals operate for different combina-
tions of read, write, and idle bus operations. DT/R goes

80286

1-97

ey Valid Addr VAR LY XS Valid Addr J X5t J VaidAddr
-5
B N NN Wy

T X\ AN K %‘%@%&‘%\”’ﬁ\\

FEADY (See Note 1.)

N

(See Note 2.)

ARDY ‘W:”:"‘: ""q'“":"'q"%""'»."%"'%.'m 0,0, o

R A NI o i T 4

1. SRDYEN is active Low.

Notes:

(See Note 3.)
0355228

2. it SRDYEN is High, the state of SRDY will not affect READY.

3. ARDYEN is active Low.

Figure 30. Synchronous and Asynchronous Ready

active (Low) for a read operation. DT/R remains High
before, during, and between write operations.

The data bus is driven with write data during the second
phase of Ts. The delay in write data timing allows the
read data drivers, from a previous read cycle, sufficient
time to enter three-state OFF before the 80286 CPU
begins driving the local data bus for write operations.
Write data will always remain valid for one system clock
pastthe last Tc to provide sufficient hold time for MULTI-
BUS or other similar memory or /O systems. During
write-read or write-idle sequences, the data bus enters
three-state OFF during the second phase of the proces-
sor cycle after the last Tc. In a write-write sequence the
data bus does not enter three-state OFF between Tc
and Ts.

Bus Usage

The 80286 local bus may be used for several functions:
instruction data transfers, data transfers by other bus
masters, instruction fetching, processor extension data
transfers, interrupt acknowledge, and halt/shutdown.
This section describes local bus activities which have
special signals or requirements.

HOLD and HLDA

HOLD and HLDA allow another bus master to gain con-
trol of the local bus by placing the 80286 bus into the Tn
state. The sequence of events required to pass control

between the 80286 and another local bus master are
shown in Figure 34.

In this example, the 80286 is initially in the Th, state as
signaled by HLDA being active. Upon leaving T, as
signaled by HLDA going inactive, a write operation is
started. During the write operation another local bus
master requests the local bus from the 80286 as shown
by the HOLD signal. After completing the write opera-
tion, the 80286 performs one Ti bus cycle, to guarantee
write data hold time, then enters Tn as signaled by HLDA
going active.

The CMDLY signal and ARDY ready are used to start
and stop the write bus command, respectively. Note that
BRDY must be inactive or disabled by SRDYEN to guar-
antee ARDY will terminate the cycle.

HOLD must not be active during the time from the lead-
ing edge of RESET until 34 CLKs following the trailing
edge of RESET unless the 80286 is in the Halt condition.
To ensure that the 80286 remains in the Halt condition
until the processor Reset operation is complete, no in-
terrupts should occur after the execution of HLT until 34
CLKs after the trailing edge of the RESET pulse.

Lock

The CPU asserts an active lock signal during Interrupt-
Acknowledge cycles, the XCHG instruction, and during
some descriptor accesses. Lock is also asserted when

1-98 80286

Read Cycle
T +

Write Cycle

T i

|
' 62 1

B2t

CLK

2 i‘ [Tc-

AsrA,

Dis—Ds

Data

Valid Read

N

RDC
TS A\
DEN
AN
DTR N

0355229

Figure 31. Back-to-Back Read-Write Cycles

the LOCK prefix is used. The LOCK prefix may be used
with the following ASM-286 assembly instructions;
MOVS, INS, and QUTS. For bus cycles otherthan Inter-
rupt-Acknowledge cycles, Lock will be active for the first
and subsequent cycles of a series of cycles to be locked.
Lock will not be shown active during the last cycle to be
locked. For the next-to-last cycle, Lock will become in-
active at the end of the first Tc regardiess of the number
of wait-states inserted. For Interrupt-Acknowledge cy-
cles, Lock will be active for each cycle, and will become
inactive at the end of the first Tc for each cycle regard-
less of the number of wait-states inserted.

Instruction Fetching

The 80286 Bus Unit (BU) will fetch instructions ahead of
the current instruction being executed. This activity is
called prefetching. It occurs when the local bus would
otherwise be idle and obeys the following rules:

A prefetch bus operation starts when at least two bytes
of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches inde-
pendent of the byte alignment of the code segment base
in physical memory.

The prefetcher will performonly abyte code fetch opera-
tion for controi transfers to an instruction beginningon a
numerically odd physical address.

Prefetching stops whenever a control transfer or HLT
instruction is decoded by the IU and placed into the
instruction queue.

In real address mode, the prefetcher may fetch up to 5
bytes beyond the last control transfer or HLT instruction
in a code segment.

in protected mode, the prefetcher will never cause a
segment overrun exception. The prefetcher stops atthe
last physical memory word of the code segment. Excep-
tion 13 will occur if the program attempts to execute
beyond the last full instruction in the code segment.

If the last byte of a code segment appears on an even
physical memory address, the prefetcher will read the
next physical byte of memory (perform a word code
fetch). The value of this byte is ignored and any attempt
to execute it causes exception 13.

80286

1-99

Valid
Read
Data
A L _veawmoa” ZNSY—fm A XS
[
RAWTT
DEN
DT/R
03552-30
Figure 32. Back-to-Back Write-Read Cycies
Write Cycle N-1 L Write Cyde N |
T »} T T T J T > T, ——-|
' T l_*_ c T 13 *1e [T*)
‘e o ' ¢ o' ¢ o' ot ¢ o' ¢
CLK
Reshe vaidfaaarn-1 | XX vaidfagarN | Xt X ¢

DDy ——————— {f,; / Valid Data N-!/

(
\ -

03652-31

DTR

Figure 33. Back-to-Back Write-Write Cycles

1-100 80286

AMD n

80286

82284

82C288

Bus Hold Acknowledge Write Cycle Bus Hold Acknowledge
—_—

T T T, T
BusyceType| o1 1" 02 | o1 " 2] eyt ezl oyt o)

CLK

2 o1 e2] o1 el el el vt el

{See Note 5, 6.)

HOLD \, (See Note 4.) /

HLDA T\ /

_(SeeNoten) __ _ ___ _ _ - (SeeNote 1)

M ————————————— valid
COD/INTA

{See Note 3.)

BHE R ——————————————— Valid 2

i Dis-Do —————————————————&(Valid ————

SRDY +
SROVEN

Not Ready Not Ready

__/ \ AN

Not Ready Not Ready 'eady

CMDLY \ \ / \

Delay Enable
MWTC \ N—

DT/R (HIGH)
(See Note 7.)

OEN \
ALE / \.

TS=Status Cycle
TC =Command Cycie

03552-32

Notes: 1. Status lines are not driven by 80286, yet remain high due to pull-up resistors in 82C288 and 82289 during
HOLD state.

2. Address, MO and COD/INTA may start may stant floating during any TC, depending on when internal
80286 bus arbiter decides to release bus to external HOLD. The float starts in 2 of TC.

3. BHE and LOCK may start floating after the end of any TC, depending on when internal 80286 bus arbiter
decides to release bus to external HOLD.

4. The minimum HOLD | to HLDA { time is shown. Maximum is one T, longer.
5. The earliest HOLD T time is shown which will always allow a subsequent memory cycle if pending.

6. The minimum HOLD T to HLDA T time is shown. Maximum is a function of the instruction, type of bus cycle
and other machine status (i.e., Interrupts, Waits, Lock, etc.).

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this
example. Synchronous ready state is ignored after ready is signaled via the asynchronous input.

Figure 34. MULTIBUS Write Terminated by Asynchronous Ready with Bus Hold

80286 1-101

a AMD

Processor Extension Transfers

The processor extension interface uses I/O port ad-
dresses 00F8(H), and 00FA(H), and 00FC(H) which are
partofthe VO port address range and is areserved area.
An ESC instruction with EM =0 and TS =0 will perform
/O bus operations to one or more of these /O port
addresses independent of the value of IOPL and CPL.

ESC instructions with memory references enable the
CPU to accept PEREQ inputs for processor extension
operand transfers. The CPU will determine the operand
starting address and read/write status of the instruction.
For each operand transter, two or three bus operations,
one word transfer with /O port address 00FA(H), and
one or two bus operations with memory are performed.
Three bus operations are required for each word oper-
and aligned on an odd byte address.

Interrupt Acknowledge Sequence

Figure 35 illustrates an interrupt acknowledge se-
quence performed by the 80286 in response to an INTR
input. An interrupt acknowledge sequence consists of
two INTA bus operations. The first allows a master
8259A Programmable Interrupt Controller (PIC) to de-
termine which, it any, of its slaves should retum the
interrupt vector. An eight-bit vector is read by the 80286
during the second INTA bus operation to select aninter-
rupt handler routine from the interrupt table.

The Master Cascade Enable (MCE) signal of the
82C288 is used to enable the cascade address drivers,
during INTA bus operations (see Figure 35), onto the
local address bus for distribution to slave interrupt con-
trollers via the system address bus. The 80286 emitsthe
LOCK signal (active Low) during Ts of the first INTA bus
operation. A local bus “hold” request will not be honored
until the end of the second INTA bus operation.

Three idle processor clocks are provided by the 80286
between INTA bus operations to allow for the minimum
INTA to INTA time and CAS (cascade address) out
delay of the 8259A. The second INTA bus operation
must always have at least one extra Tc state added via
logic controliing READY. A2—Ac are in three-state OFF
until after the first Tc state of the second INTA bus op-
eration. This prevents bus contention between the cas-
cade address drivers and CPU address drivers. The
extra Tc state allows time for the 80286 to resume driv-
ing the address lines for subsequent bus operations.

Local Bus Usage Priorities

The 80286 local bus is shared among several internal
units and external HOLD requests. In case of simultane-
ous requests, their relative priorities are:

Any transfers which assert LOCK either ex-
plicitly (via the LOCK instruction prefix) or
implicitly (i.e., segment descriptor access,
interrupt acknowledge sequence, or an
XCHG with memory).

The second of the two-byte bus operations
required for an odd aligned word operand.

Local bus request via HOLD input.

Processor extension data operand transfer
via PEREQ input.

Datatransfer performed by EU as partof an
instruction.

(Highest)

Y
(Lowest) An instruction prefetch request from BU.
The EU will inhibit prefetching two proces-
sor clocks in advance of any data transfers
to minimize waiting by EU for a prefetch to
finish.

Halt or Shutdown Cycles

The 80286 externally indicates halt or shutdown condi-
tions as a bus operation. These conditions occur due to
a HLTinstruction or multiple protection exceptions while
attempting to execute one instruction. A halt or shut-
down bus operation is signalled when 51, S0 and COD/
TNTA are Low and MAD is High. As High indicates hatt,
and A: Low indicates shutdown. The 82C288 bus con-
troller does not issue ALE, nor is READY required to
terminate a halt or shutdown bus operation.

During halt or shutdown, the 80286 may service PEREQ
or HOLD requests. A processor extension segment
overrun exception during shutdown will inhibit further
service of PEREQ. Either NMI or RESET will force the
80286 out of either halt or shutdown. An INTR, if inter-
rupts are enabled, or a processor extension segment
overrun exception will also force the 80286 out of halt.

System Configurations

The versatile bus structure of the 80286 microsystem,
with a full complement of support chips, allows flexible
configuration of a wide range of systems. The basic
contiguration, shown in Figure 36, is similar to an iAPX
86 maximum mode system. It includes the CPU plus an
8259A interrupt controller, 82284 clock generator, and
the 82C288 Bus Controller. The iAPX 86 latches (29843
and 29845) andtransceivers (29833 and 29863) may be
used in an 80286 microsystem.

1-102

80286

AMD n

80286

82C288

INTA Cycle 1 INTA Cycle 2
BusCydeType | ”|Tc.2 o Ts.zl W ch.2| e "ITI 02| » IT' 02| w lT- 02| o1 Ts¢2| # |T°¢2| otfce2| o ITso2|
CLK b h N N
See Note 5.) See Note 5.
W e W L1 Y e veoe SRS L Gl
BE Sy — e ——— —(Don't Care)— ———————— —<
Brovi (See Note 1.)
DiDs write Cycle >- —————————— -D— —————————————————— "—
(See Note 2.) {See Note 3.)
i /£ N\ /
Not Ready Ready Not Ready Ready
MCE / \ / \
ALE /—_\ J—\
OTR ———_—/7 \ /
DEN / \ / \
03552-33
Notes: 1. Datais ignored.
2. First INTA cycle should have at least one wait state inserted to meet 8259A minimum INTA pulse width,
3. Second INTA cycle must have at least one wait state inserted since the CPU will not drive A,~A,, BHE, and LOCK

until after the first T state.
The CPU imposed one/clock delay prevents bus contention between cascade address buffer being disabled by

MCE | and address outputs.
Without the wait state, the 80286 address will not be valid for a memory cycle started immediately after the second
INTA cycle. The 8259A also requires one wait state for minimum INTA pulse width.

[OCK is active for the first INTA cycle to prevent the 82289 from releasing the bus between INTA cycles in a
multi-master system.

A,~A, exits three-state OFF during ¢2 of the second T, in the INTA cycle.

Figure 35. Interrupt Acknowledge Sequence

80286 1-103

u AMD

v
Y AEN izl Memory Read
0 _ MWTC # Memory Write
oORC IO Read
_[®{CMDLY o & /O Write
X X, % = s RTE # Interrupt Acknowledge
FESET S 5 -
T ol 57 ALE Advanced
TEADY - MCE = Memory
I -] EEI'-K CLK CLK Den JF —| Decode |- ang 10 Chip
= i iezczes Bus -] ,——"9 (Optional) | Selects
o Controller TTTI
= wo |1 [| 2 I |
| N]
SYNCREADY—- SRV o |-¢ -l I]
SYNC READY ENABLE —# SROVEN I | 11
ASYNC READY —pui ARDY | RESET I.'(Mi/‘:rg | I L
ARDBYEN o Address Bus
ASYNC READY ENABLE] ?;zlzss: i ol cLk conmTA- = 11 -_E
Genaofator | —.STE y Il
i & ParAg
— —] NMI BAE ZAN
{_,———J- —» HOLD ‘
<—{HLDA
| : E—— o CASws g |a— Chip Select
T P | INT
I P e R A1 i
§ SRR 80286 CPU I g > FD
- iJ..LLI_I D=, L. SPEN
DD, 82504 K :
| Processor] 1 ﬂ Interrupt 1Ry
: Extension I - Controller
{Optional) N
R 29833
> Data
Transceiver| Bus
T

03552-34

Figure 36. Basic 80286 System Configuration

As indicated by the dashed lines in Figure 36, the ability
to add processor extensions is an integral feature of
80286 microsystems. The processor extension inter-
face allows external hardware to perform special func-
tions and transfer data concurrent with CPU execution
of other instructions. Full system integrity is maintained
because the 80286 supervises all data transfers and
instruction execution for the processor extension.

The 80286 with the 80287 numeric processor extension
(NPX) uses this interface. The iAPX 286/287 has all the
instructions and data types of an iAPX 86/87 or iAPX
88/87. The 80287 NPX can perform numeric calcula-
tions and data transfers concurrently with CPU program
execution. Numerics code and data have the same in-
tegrity as all other information protected by the 80286
protection mechanism.

The 80286 can overlap chip select decoding and ad-
dress propagation during the data transfer for the previ-
ous bus operation. This information is latched into the
29843/45’s by ALE during the middie of a Ts cycle. The
latched chip select and address information remains
stable during the bus operation while the next cycle's
address is being decoded and propagated into the sys-
tem. Decode logic can be implemented with a high-
speed bipolar PROM.

The optional decode logic shown in Figure 36 takes
advantage of the overlap between address and data of
the 80286 bus cycle to generate advanced memory and
1/0-select signals. This minimizes system performance
degradation caused by address propagation and de-
code delays. In addition to selecting memory and /O,
the advanced selects may be used with configurations
supporting local and system buses to enable the appro-
priate bus interface for each bus cycle. The COD/INTA
and M/O signals are applied to the decode logic to
distinguish between interrupt, /O, code and data bus
cycles.

By adding the 82289 bus arbiter chip, the 80286 pro-
vides a MULTIBUS system bus interface as shown in
Figure 37. The ALE output of the 82C288 for the MULTI-
BUS bus is connected to its CMDLY input to delay the
start of commands one system CLK as required to meet
MULTIBUS address and write data set-up times. This
arrangement will add at least one extra Tc state to each
bus operation which uses the MULTIBUS.

A second 82C288 bus controller and additional latches
and transceivers could be added to the local bus of
Figure 37. This configuration allows the 80286 to

1-104

80286

AMD a

—{SYSBTESE
AESET BCLK [@———
a4 RE INIT f¢——n—
Vee C'%__CR BREQ perer—t .
[ANYRQST BPRG p——— p Muliibus
30 10 o a——— Bus Arbitration
§1- m i
—{READY s -
-{ CLK oK
AEN —
82289
Bus Arbiter
Veo
AEN MRDC # Memory Read
a MWTTC Memory Write
|—| '—I fre):°03 ® /O Read
CMDLY 5ok > 1O Write
X2 X - % NTA - Interrupt Acknowledge
e O o
I -—{ PCLK READY DEN
—EFI CLK CLK pTR
- ™ FT 82268 Bus
— Controller M0
SYNC READY = SFDY ooy
SYNC READY ENABLE —s| SADYEN [
ASYNC READY —{ ARDY RESET WG >
ASYNC READY ENABLE — 82284 OCK L»{ OF Address Bus
Clock | |1 ' CLK__ cOD/INTA|—
Generator| | | — éﬂm
| I §! As-Ay
! e NMI BHE VAN
l—l____l —s{HOLD
| i «—{HLDA J -
————
: | rr____. CASw: g8 le . Chip select
I 11 i A INTR INT
| — E NTA
i | | ' o oss CAP W
Pl
411 cPU D
r LL| Dis- Dy = SP/EN
:1 oD, 82598 K :
I Processor I A rDénterru' . 1R~IR;
Extension - ontrofler
| (oplionay |NTT——
R 50833
Data
Transceiver Bus

03552-35

Figure 37. MULTIBUS System Bus Interface

support anon-board bus for local memory and peripher-
als and the MULTIBUS for system bus interfacing.

Figure 38 shows the interface of the 80286 with the
Am2968 Dynamic Memory Controller. The interface is
a timing controller which consists of some control
logic and a delay line. The timing controller runs
asynchronously to the CPU. it arbitrates between mem-
ory requests and refresh requests by generating the
proper signals to the dynamic memory controller and

memory. The design described is a simple, cost-
effective solution to interfacing the 80286 with the
Am2968. A further description about DRAM selection
based on processor speed may be found inthe Am2968
Application Note.

Two-operand instructions (e.g., MOV and ADD) are
usually three to six bytes long. Memory-to-memory op-
erations are provided by a special class of string instruc-
tions requiring one to three bytes.

80286

1-105

n AMD

[Address Bus > An
Ar—Ax
Aortos 1-Az -1 SELO, 1
Az—-Aos ,; Decoder - Am2968
VAN ‘ RASI Qu 7 A
[4
e—| Dolay |-»{ MSEL RASn a RAS
Conu_' ol la—{ Line | CASI 4 -
Logic MC! 7
AOO AmPAL | BFRG Moo
BAE r DRAM
Am9064
80286 EN AmS0C256
16I:I\lAHz
CLK Vi o
- 82284 WE,
CLK
Generator
&
reAny| Y <}
L D, Q
g2coss |-DEN Tie
Bus w
Controt
Do—Dis ontro DT/R TR 2946
Data Bus i
03552-36
Figure 38. 80286 Interface with the Am2968 Dynamic Memory Controller
Table 15. 80286 Systems Recommended Pull-up Resistor Values
80286 Pin and Name Pull-up Value Purpose
457
5 50 20KQ+10% rl:ull 30, 3_1 and PEACK inactive during 80286
old periods.
6—-PEACK
53-ERROR Pull ERROR and BUSY inactive when 80287
20KQ+10% not present (or temporarily removed from
54-BUSY socket).
—— Pull READY inactive within required minimum
63-READY 910Q+5% time (C. = 150 pF, 1a < 7TmA).

1-106 80286

AMD
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5 Byte 6
76543210726843210 e —————
I l l l l Low Disp/Data | High DispData | Low Data High Data |
Opcode diw|mod] reg vm | 0V Ve 1
Register Operand/Registers to use in Offset Calculation
Register Operand/Extension of Opcode
Register Mode/Memory Mode with Displacement Length
Word/Byte Operation
Direction is to Register/Direction is from Register
Operation (Instruction) Code
0355237
A. Short Opcode Format Example
Byte 1 Byte 2 Byte 3 Byte 4 Byte 5
ENRNNNAARE AN N
i High Dis|
Long Opeodo o R Low Disp | igh Disp _,
B. Long Opcode Format Example
03552-38

Figure 39. 80286 Instruction Format Exampies

80286

1-107

n AMD

80286 INSTRUCTION SET SUMMARY
Instruction Timing Notes

The instruction clock counts listed below establish the
maximum execution rate of the 80286. With no delays in
bus cycles, the actual clock count of an 80286 program
will average 5% more than the calculated clock count,
due to instruction sequences which execute faster than
they can be fetched from memory.

To calculate elapsed times for instruction sequences,
multiply the sum of all instruction clock counts, as listed
in the table below, by the processor clock period. An
8-MHz processor clock has a clock period of 125
nanoseconds and requires an 80286 systemclock (CLK
input) of 16 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded, and
is ready for execution. Control transfer instruction
clock counts include all time required to fetch,
decode, and prepare the next instruction for
execution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

Instruction Set Summary Notes

Addressing displacements selected by the MOD field
are not shown. [f necessary they appear after the in-
struction fields shown.
Above/below refers to unsigned value
Greater refers to positive signed value
Less refers to less positive (more negative) signed
values
ifd=1 thento register; if d = 0 then from register
itw=1 then word instruction; if w =0 then byte
instruction
it s =0 then 16-bit immediate data to form the
operand
if s =0 then animmediate data byte is sign-
extended to form the 16-bit operand
x= don't care
z= used for string primitives for comparison with
ZF FLAG
If two clock counts are given, the smaller reters to a
register operand and the larger refers to a memory oper-
and.

*= addone clock if offset calculation requires sum-
ming 3 elements

n=_number of times repeated

m=_number of bytes of code in next instruction
Level (L)—Lexical nesting level of the procedure
The following comments describe possible exceptions,
side effects, and allowed usage for instructions in both
operating modes of the 80286.

Real Address Mode Only

1. This is a protected mode instruction. Attempted
execution in real address mode will result in an un-
defined op-code exception (6).

2. A segment overrun exception (13) will occur if
a word operand reference at offset FFFF(H) is
attempted.

3. This instruction may be executed in real address
mode to initialize the CPU for protected mode.

4. The IOPL and NT fields will remain 0.

5. Processor extension segment overrun interrupt (9)
will occur if the operand exceeds the segment limit.

Elther Mode

6. An exception may occur, depending on the value of
the operand.
7. LOCK is automatically asserted regardiess of the
presence or absence of the LOCK instruction prefix.
8. LOCK does not remain active between all operand
transfers.
Protected Virtual Address Mode Only

9. A general protection exception (13} will occur if the
memory operand cannot be used due to either a
segment limit or access rights violation. If a stack
segment limit is violated, a stack segment overrun
exception (12) occurs.

10. For segment load operations, the CPL, RPL, and
DPL must agree with privilege rules to avoid an
exception. The segment must be present to avoid a
not-present exception (11). If the SS register is the
destination, and a segment-not-present violation
occurs, a stack exception (12) occurs.

11. All segment descriptor accesses inthe GDT or LDT
made by this instruction will automatically assert
LOCK fo maintain descriptor integrity in multi-
processor systems.

12. JMP, CALL, INT, RET, IRET instructions referring
to another code segment will cause a general
protection exception (13) if any privilege rule is
violated.

13. A general protection exception (13) occurs if
CPL#0.

14. A general protection exception (13) occurs if
CPL>IOPL.

15. The IF field of the flag word is not updated if
CPL>IOPL. The IOPL field is updated only if
CPL=0.

16. Any violation of privilege rules as applied to the
selector operand do not cause a protection excep-
tion; rather, the instruction does not return a result
and the zero flag is cleared.

17. If the starting address of the memory operand vio-
lates a segment limit, or an invalid access is at-
tempted, a general protection exception (13) will
occur before the ESC instruction is executed. A
stack segment overrun exception (12) will occur it
the stack limit is violated by the operand’s starting
address. If a segment limit is violated during an
attempted data transfer, then a processor extension
segment overrun exception (9) occurs.

18. The destination of an INT, JMP, CALL, RET, or
IRET instruction must be in the defined limit of a
code segment or a general protection exception
(13) will occur.

1-108

80286

AMD n

ABSOLUTE MAXIMUM RATINGS

Storage Temperature —6510 +150°C
Voltage on Any Pin with

Respectto Ground -10to+7.0V
Power Dissipation 3.15W

Stresses above those listed under ABSOLUTE MAXIMUM
RATINGS may cause permanent device failure. Functionality
at or above these limits is not implied. Exposure to absolute
maximum ratings for extended periods may affect device
reliability.

OPERATING RANGES
Commercial (C) Devices
Temperature (TC) 0to +85°C
Supply Voltage (VcC) 5 Vi5%

Operating ranges define those limits between which the
functionality of the device is guaranteed.

DC CHARACTERISTICS
{Vec=5V +£5%, Tease=0 to +85° C)

Parameter! Description Test Conditions Min Max Unit
Vi Input Low Voltage -5 8 \'
Vin Input High Voltage 2.0 Vec+0.5 \J
Vie CLK Input Low Voltage -5 6 \
ViHe CLK Input High Voltage 3.8 Vec+0.5 Vv
VoL Output Low Voltage loo=2.0 mA 0.45 \Y
Vou Qutput High Voltage lon=—400 pA 2.4 \'/
I Input Leakage Current 0 V<VN < Ve 110 pA
o Output Leakage Current 0.45 V < Vour< Vee +10 HA
lec Supply Current (turn on, 0°C) | Note 1 600 mA
Cewk CLK Input Capacitance Fc=1 MHz 20 pF
CnN Other Input Capacitance Fc=1 MHz 10 pF
Co Input /Output Capacitance Fc=1 MH:z 20 pF
lo Output Leakage Current 0V < Vour <045V +1 mA
It Input Sustaining Current On Vin= 0V 30 500 pA

BUSY and ERROR pins
len Input CLK Leakage Current 0.45 < Vin < Vee +10 HA
ILen input CLK Leakage Current 0V Vn<045V +1 mA
Note: Low temperature is worst case.
80286

n AMD

SWITCHING CHARACTERISTICS

Vo= +5V15%, Tease=0°to +85°C
AC Timings are referenced to 0.8V and 2.0V points of signals as illustrated in data sheet waveforms, unless

otherwise noted.

8 MHz 10MHz
Parameters; Description Test Conditions Min. | Max. { Min.| Max. | Unlt

1 System Clock (CLK) Period . 62 125 50| 125 | ns
2 System Clock (CLK) Low Time at 1.0V 15 100 12] 109 | ns
3 System Clock (CLK) High Time at 3.6V 25 110 16 | 113 | ns
17 System Clock (CLK) Rise Time 1.0V to 3.6V 10 8 | ns
18 System Clock (CLK) Fall Time 3.6Vto1.0V 10 8 | ns
4 Asynchronous Inputs Setup Time Note 1 20 20 ns
5 Asynchronous Inputs Hold Time Note 1 20 20 ns

6 RESET Setup Time 28 23 ns
7 RESET Hold Time 5 5 ns
8 Read Data Setup Time 10 8 ns
9 Read Data Hold Time 8 8 ns
10 READY Setup Time 38 26 ns
11 READY Hold Time 25 25 ns
12 Status/PEACK Valid Delay Note 2, Note 3 1 40 - - | ns
12a Status/PEACK Active Delay Note 2, Note 3 - - 1] 22 | ns
12b Status/PEACK tnactive Delay Note 2, Note 3 - - 1] 30 | ns
13 Address Valid Delay Note 2, Note 3 1 60 1 35 | ns
14 Wirite Data Valid Delay Note 2, Note 3 0 50 0 30 | ns
15 Address/Status/Data Float Delay Note 2, Note 4 0 50 0 47 | ns
16 HLDA Valid Delay Note 2, Note 3 0 50 0 47 | ns
19 Address Valid to Status Note 3, Note 5, 38 27 ns

Valid Setup Time Note 6

Notes: 1. Asynchronous inputs are INTR, NMi, HOLD PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

. Delay from 1.0V on the CLK to 0.8V or 2.0V or fioat on the output as appropriate for valid or floating condition.
. Output load: G, = 100 pF.

. Float condition occurs when output current is less than 1, in magnitude.
. Delay measured from address either reaching 0.8 V or 2.0 V (valid) to status going active reaching 2.0 V or status
going inactive reaching 0.8 V.

6. Forload capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz spec, and maximum 7 ns for
10 MHz spec.

N b ON

1-110

AMD n

SWITCHING CHARACTERISTICS (continued)

Vee=4+5V 5%, Tease=0°1t0 +85°C

AC Timings are referenced to 0.8V and 2.0V points of signals as illustrated in data sheet waveforms, uniess
otherwise noted.

12.5 MHz 16 MHz
Parameters | Description Test Conditions Min. | Max.| Min.{ Max.| Unit

1 System Clock (CLK) Period 40 125 31} 125 | ns

2 System Clock (CLK) Low Time at 1.0V 11 112 10} 113 | ns

3 System Clock (CLK) High Time at 3.6V 13 114 12) 115 | ns
17 System Clock (CLK) Rise Time 1.0V to 3.6V 8 8 ns
18 System Clock (CLK) Fall Time 3.6Vto1.0V 8 8 ns
4 Asynchronous Inputs Setup Time Note 1 15 11 ns

5 Asynchronous Inputs Hold Time Note 1 15 11 ns

6 RESET Setup Time 18 14 ns

7 RESET Hold Time 5 3 ns

8 Read Data Setup Time 5 5 ns

9 Read Data Hold Time 6 5 ns
10 READY Setup Time 22 15 ns
11 READY Hold Time 20 ns
12 Status/PEACK Valid Delay Note 2, Note 3 - - 1 18 | ns
123 Status/PEACK Active Delay Note 2, Note 3 3 18 1 18 | ns
12b Status/PEACK Inactive Delay Note 2, Note 3 3 20 1| 20| ns
13 Address Valid Delay Note 2, Note 3 1 32 1 23 | ns
14 Write Data Valid Delay Note 2, Note 3 0 30 0 22 | ns
15 Address/Status/Data Float Delay Note 2, Note 4 0 32 0 29 | ns
16 HLDA Valid Delay Note 2, Note 3 0 25 0 25 | ns
19 Address Valid to Status Note 3, Note 5, 22 22 ns

Valid Setup Time Note 6

Notes: 1. Asynchronous inputs are INTR, NMI, HOLD PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure recognition at a specific CLK edge.

. Delay from 1.0V on the CLK to 0.8V or 2.0V or float on the output as appropriate for valid or floating condition.
. Output load: C, = 100 pF.
. Float condition occurs when output current is less than |, in magnitude.

. Delay measured from address either reaching 0.8 V or 2.0 V (valid) to status going active reaching 2.0 V or status
going inactive reaching 0.8 V.

6. Forload capacitance of 10 pF on STATUS/PEACK lines, subtract typically 7 ns for 8 MHz spec, and maximum 7 ns for
10 MHz spec.

[S 0 S /> I \V)

80286 1-111

n AMD

AC Test Loading on Outputs

Device

Output ——:L
I

03552-39

AC Drive and Measurement Points—CLK Input

40V
CLK Input

045V

AC Setup, Hold and Delay Time Measurement—General

4.0V 36V
CLK Input k- ’ 36V
- 1.0V

0.45V 1.0V
2 4V tSEI'UF' - tHOLD
other ' 20v |20V
Dovee 0.8V { 0.8V
nput 45y ' :
[toeay —

. 2.0V
Device
Output 0.8V

03552-40

03552~41

1-112 80286

AMD n

SWITCHING WAVEFORMS
Major Cycle Timing

Read Cycle illustrated
with zero wait states

Bus Cycle Type T

CLK

80286

82284

82C288

DEN

Note: The modified timing is due to the CMDLY signal being active.

Vou e 0]

Ve

.
K_/?—!
—
—

Valid Address

Write Cycle illustrated
with one wait state

Ts Te T

A A A A

.

alid Address

Valid i Tg

Va

lid Control

T—="1

{ \

Valid Control)

alid i Ts

Valid Write Data

el

l p

03552-42

80286

1-113

n AMD

SWITCHING WAVEFORMS (continued)

80286 Asynchronous Input Signal Timing

Bus Cycle Type

CLK _v/——! C.._;‘_!

PCLK
(See Note 1.)

INTR, NMI,
HOLD, PEREQ
(See Note 2.)

ERROR BUSY
(See Note 2.)

0355243

Notes: 1. PCLK indicates which processor cycle phase will
occuron the next CLK. PCLK may not indicate the

80286 Reset Input Timing and Subsequent
Processor Cycle Phase

CLK

Reset

CLK

Reset

correct phase until the first bus cycle is performed.

2. These inputs are asynchronous. The setup and
hold times shown assure recognition for testing

purposes.

Bus Cycle Type

CLK

HLDA

80286

82284

Exiting and Entering Hold

\

k= If NPX Transfer

Note: When RESET meets the set-up time shown, the next
CLK will start or repeat $1 of a procsessor cycle.

TorT, T Tu
e/ E Ve
(See Nots 4.)

%
ote 3) ——g-— @I-— {See Note 3)
—— @ o ? | _______
@ 1 ©) |- ’
@ A ?'::Qr-_ ————————————

0355245

Notes: 1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is

shown.

O N~ WN

. The data bus will be driven as shown if the last cycle before T, in the diagram was a write T..

. The 80286 floats its status pins during T,,. External 20 k2 resistors keep these signals high (see Table 15).
. For HOLD request set-up to HLDA, refer to Figure 34.

. BHE and TOCK are driven at this time but will not become valid until T.
. The data bus will remain in three-state OFF if a read cycle is performed.

1-114

80286

AMD n

SWITCHING WAVEFORMS (continued)
80286 PEREQ/PEACK Timing Required PEREQ Timing for One Transfer Only

Bus Cycle Type
Te Ts Te T

VO Read if proc. ext. 1o memory Memory Write if proc. ext. 10 memory
/ Memory Read i memory to proc. ext. / WO Write if memory to proc. ext.

N/ /[

Memory address ¥ proc. ext. fo memory transfer

V;Jponwdr-u OOFA(H) ¥ memory to proc. ext. transfer
Ass{Ag
MO, A Y ><
cob J - \—'I‘VOponaddquOFA(H)lpronm.wnmrymndm

b —
PEACK (See Note 1.}

—
la——— (300 Note 2) ——»
oo
0, 0,

Q-—

Oy

0355246

Assuming word-aligned memory operand; if odd-aligned, 80286 transfers to/from memory byte-at-a-time
with two memory cycles.

Notes: 1. PEACK always goes active during the first bus oparation of a processor extension data operand transfer sequence.
The first bus operation will be either a memory read at operand address or /O read at port address 00FA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (shown above) is: 3x
1-11 max—4 min. The actual, configuration dependent, maximum timeis:3x 1~11 max—-4min+Ax2x 1. Aisthe
number of extra T, states added to either the first or second bus operation of the processor extension data operand

transfer sequence.

80286 1-115

a AMD

Initial 80286 Pin State During Reset

Bus Cycle Type
Tx Tx Tx T,
" &_/&’ | | &_/91_’
CLK
W/
See Note 2.
—’| -— (Seo Nots 1) ¢) _-|®
RESET y % 2R
| At least l %, R
1 16 CLK Periods | |g— @_.
la- (1)~
5-% ® | (4
PEACR Unknown 7¥
A’j",&' Unknown 7f
- @ |-
Mo p
COD/NTA Unknown N %
7Y
(&)
%
[oCR Unknown 4
- ©® (See Note 3.)
ok T3S IS D5 M S—

HLDA Unknown

if hold is NOT active (See Note 4.)

(4

Notes: 1. Set-up time for RESET T may be violated with the consideration that ¢1 of the processor clock may begin one

system CLK period later.

£

0972947

2. Set-up and hold times for RESET | must be met for proper operation, but RESET | may occur during ¢1 or ¢2.
3. The data bus is only guaranteed to be in three-state OFF at the time shown.

4. HOLD is acknowledged during RESET, causing HLDA to go active and the appropriate pins to fioat. If HOLD remains
active while RESET goes inactive, the 80286 remains in HOLD state and will not perform any bus accesses until
HOLD is deactivated.

1-116

80286

AMD u

80286 INSTRUCTION SET SUMMARY

Clock Count Comments
Aggr‘elss i’ﬁiﬁi" A(?;:;ss ‘:ﬁ?ﬁ:d
Function Format Mode Modo Mode e
DATA TRANSFER
MOV =Move:
Register to Register/Memory] 1000 100w| mod reg r/m 2,3" 2,3 2 9
Register/Memory to Register] 100010 1w] mod reg r/m 2,5* 25" 2 9
Immediate to register/ 110001 1w| mod000r/m data data ifw=1 23" 2,3" 2 9
Memory
Immediate to register 1011wreg data data if w=1 2 2
Memory to accumulator 1010000w! addr-low addr-high S 5 2 9
Accumulator to memory 1010001w| addrlow addr-high 3 3 9
Register/memory to 10001110 | modOregr/m 2,5* 17,19° 9,10,11
segment register
Segment register to 10001100 |modOregr/m | 2,3 2,3 2 9
register/memory
PUSH =Push:
Memory 11111111 mod1100m | 5° 5 2 9
Register 01010reg 3 3 2 9
Segment register 000reg110 3 3 2 9
Immediate* 0110100| dam [dataits=0 | 3 3 2 9
PUSHA = Push All* 01100000 17 17 2]
POP =Pop
Memory 10001111]mod000rm | 5* 5* 2 9
Register 01011reg 5 5 2 9
Segment register 000reg111| (reg=01) 5 20 2 9,10,11
POPA =Pop All* 01100001 19 19 2 9
XCHG = Exchange:
Regis}er/memory with [1000011 wl modreg t/m J 3,5" 3,5* 2,7 7.9
register
Register with accumulator 3 3
IN =Input from:
Fixed port 1110010w| port] 5 5 14
Variable port 1110110w 5 5 14
OUT =Output to:
Fixed port 1110011w] pot | 3 3 14
Variable port 1110111w 3 3 14
XLAT = Translate byte to AL} 11010111 5 5 9
LEA =Load EA to register 10001101 | modregr/m 3 3"
LDS =Load pointer to DS 11000101 | modreg /m | (mod = 11) 7 21" 2 9,10,11
LES = Load pointer to ES 11000100 | mod reg /m |(mod = 11) 7" 21* 2 9,10,11
LAHF = Load AH with flags | 10011111 2 2
SAHF = Store AH into flags |} 10011110 2 2
PUSHF = Push flags 10011100 3 3 2 9
POPF =Pop flags 10011101 5 5 24 9,15

*Indicates instructions not available in iAPX 86, 88 microsystems.

See footnotes on page 1-124.

80286

1-117

n AMD

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Real nvmu.n‘ Reel r_v&m
Function Format Mode Mode | Mode | Mode
ARITHMETIC
ADD=Add:
Reg/memory with register to either]000000dw | modreg r/m 27| 27 9
Immediate to register/memory 100000sw{ modOOr/m data data if sw=01 3,77] 3,7 2 9
Immediate to accumulator 0000010w | data data ifw=1 3 3
ADC = Add with carry:
Reg/memory with register to either {000100dw | modreg r/m 2,71 2,7 2 9
immediate to register/memory 100000sw| mod010r/m| data data if s:.w =01 3,77 3,7 2 9
immediate to accumulator 0001010w{ data data ifw=1 3 3
INC =Increment:
Register/memory 1111111w| mod00OO /M] 2,7 2,7 2 9
Register 01000reg 2 2
SUB =Subtract:
Reg/memory and register to either |001010dw | modregr/m 2771 27 2 9
Immediate from register/memory 100000sw | modi101r/m| data dataifsw=1 37| 3.7 2 9
Immediate from accumulator 0001110w | data data ifw=1 3 3
SBB = Subtract with borrow:
Reg/memory and registerto either |000110dw | modreg r/m 27| 27 2 9
immediate from register/memory 100000sw| modO1irm| data data if s:w=01 3,771 3,7 2 9
Immediate from accumulator 0010110w | data data if w=1 3 3
DEC =Decrement:
Register/memory 1111111tw| mod001r/m 2,71 2,7 2 °]
Register 01001reg 2 2
CMP =Compare:
Register/memory with register 001110tw| modregrm 26| 26" 2 9
Register with register/memory 0011100w | modregrm 27| 27 2 9
Immediate with register/memory 100000sw | modt11rm| data dataifsw=01| 3,6*| 3,6* 2 9
Immediate with accumulator 0011110w | data data if w=1 3 3
NEG =Change sign 1111011w| mod011rm 2 7 2 7
AAA = ASCII adjust for add 00110111 3 3
DAA = Decimal adjust for add 00100111 3 3
AAS = ASCII adjust for subtract 00111111 3 3
DAS = Decimal adjust for subtract 00101111 3 3
MUL = Multiply (unsigned) 1111011tw| mod100r/m
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24" 24* 9
IMUL =Integer multiply (signed)* [1111011w | mod101vm |
Register-Byte 13 13
Register-Word 21 21
Memory-Byte 16* 16* 2 9
Memory-Word 24* 24" 2 9
*Indicates instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 1-124.
1-118 80286

AMD u

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected|
Real Virtual |Real | Virtual
Addi Addi Address { Add
Function Format Mode | Mode |Mode |Mode
ARITHMETIC (Continued)
IMUL = Integer immediate multiply: IO 11010a1 l mod reg r/m I data ! data ifa=0 21,24%]21,24" 2 9
(signed)*
DIV = Divide (unsigned): [t117011w]| mod110rm |
Register-Byte 14 14
Register-Word 22 22
Memory-Byte 17" 17 2,6 6,9
Memory-Word 25" 25" 2,6 6,9
IDIV = Integer divide (signed) [[111011w] mod111um |
Register-Byte 17 17
Register-Word 25 25
Memory-Byte 20" 20" 2 9
Memory-Word 28 28" 2 9
AAM = ASCIl adjust for multiply 11010100} 0000101 16 16
AAD = ASCI| adjust for divide 11010101] 00001010 14 14
CBW = Convett byte to word 10011000 2 2
CWD =Convert word to double word [10011001 2 2
LOGIC
ShifvRotate Instructions:
Register/Memory by 1 F1 01000w I mod TTT r/m] 2,77 2.7 2 9
5+n,| 5+n,
Register/Memory by CL mo 1001w l mod TTT r/mJ 8+n*] 8+n* 2 9
5+n,| 54n,

Register Memory by Count* ﬁ 100000w I mod TTT r/m] 8+n*| 8+4n" 2 9

mT Instruction

000 ROL

001 ROR

010 RCL

011 RCR

100 SHL/SAL

101 SHR

111 SAR
AND =And:
Reg/memory and register to either |[001000dw | mod reg r/m 2,7 2.7 2 9
Immediate to register/memory 1000000w | mod100rmj data data ifw=1 3,77 3.7 2 9
Immediate to accumulator 0010010w} data dataifw=1 3 3
TEST = And function to flags, no result:
Register/memory and register 1000010w | modregrm 2,6"| 26" 2 el
Immediate data and register/memory [1 11101 1w | mod000rm| data dataifw=1 3,6°| 3,6 2 9
Immediate data and accumulator 1010100w | data data ifw=1 3 3
OR=0r:
Reg/memory and register to either |000010dw | modreg r/m 2,7 27 2 9
Immediate to register/memory 1000000w]| mod0O1rmj data dataifw=1 3,77y 3,7 2 9
Immediate to accumulator 0000110w} data dataifw=1 3 3
XOR = Exclusive or:
Reg/memory and register to either [001100dw | modregrim 2,7 27 2 9
Immediate to register/memory 1000000w) mod110rm| data data ifw=1 3,77 3.7 2 9
Immediate to accumulator 0011010w] data dataifw=1 3 3
NOT =Invert register/memory 1111011w| mod010rm 271 27T 2 9

*Indicates instructions not available in iAPX 86, 88 microsystems.

See footnotes on page 1-124.

80286

1-119

n AMD

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
Reat .VJIERW R Real lV_‘l:(ull
Function Format Mode Mode Mode Mode
STRING MANIPULATION:
MOVS =Move byte/word 1010010w 5 5 2 9
CMPS = Compare byte/word 1010011w 8 8 2 9
SCAS = Scan byte/word 10101 11w 7 7 2 9
LODS =Load byte/wd to AL/AX 1010110w 5 5 2 9
STOS = Stor byte/wd from AL/A 1010101 w 3 3 2 9
INS = Input byte/wd from DX port 0110110w 5 5 2 9,14
OUTS =Output bytewd to DX port |0110111w 5 5 2 9,14
Repeated by count in CX*
MOVS = Move string 11110010 [1010010w S+4n S+4n 2 9
CMPS = Compare string 1111001z] 1010011w 5+9n 5+9n 2 9
SCAS = Scan string 11110012 [1010111w 5+8n 5+8n 2 9
LODS =Load string 1111010 1010110w 5+4n S5+4n 2 9
STOS =Store string 11110010 }J 1010101 w 4+3n 4+3n 2 9
INS = Input string* 11110010 1 0110110w 5+4n 5+4n 2 9,14
OUTS =Output string* 11110010 £0110111w S5+4n 5+4n 2 9,14
CONTROL TRANSFER
CALL=Call:
Direct within segment 11101000 | displow disp-high 7+m 7+m 2
Register memory indirect 11111111 | mod010r/m 7+mit+m| 7+m,11+m 2 8,9
within segment
Direct intersegment [too11010 segment offset 13+m 26+m 2| 81112
segment selector
Protected Mode Only (Direct Intersegment):
Via call gate to same privilege level 4t +m 8,11,12
Via call gate to different privilege level, no parameters 82+m 8,11,12
Via call gate to different privilege level, x parameters 86 +4x+m 8,11,12
Via TSS 177+m 8,11,12
Via task gate 182+m 8,11,12
indirect intersegment [1 1111111 | mod 0 1 1r/m | {mod » 11) 16+m 29+m* 2 18,9,11,12
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 44 +m* 89,11,12
Via call gate to different privilege level, no parameters 83+m* 8,9,11,12
Via call gate to different privilege level, x parameters 90 +4x+m* 8,9,11,12
Via TSS 180 +m* 8,9,11,12
Via task gate 185+m* 8,9,11,12
JMP = Unconditional jump
Shortllong 11101011 | disp-iow 7+m 7+m 8
Direct within segment 11101001] disp-low disp-high 7+m 7+m 8
Register/mem indirect within segment{1 1111111 |mod100rm 7+mi1+m*[7+m,11+m* 2 8,9
Direct intersegment 11101010 segment offset 11+m 23+m 8,11,12
segment selector
Protected Mode Only (Indirect Intersegment):
Via call gate to same privilege level 38+m 8,11,12
Via TSS 175+m 811,12
Via task gate 180+m 81112 |
Indirect intersegment (11111111 [med101vm | (mod.11) 15+m* 26+m” 2 |89.11,12

*Indicates instructions not available in iIAPX 86, 88 microsystems.
See footnotes on page 1-124.

1-120 80286

AMD u

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
n ﬁnl .Y‘i:nnl R JRJnI V)lz\unl

Function Format Mode Mode Mode Mode
CONTROL TRANSFER (Continued):
Protected Mode Only (Indirect intersegment)

Via call gate to same privilege level 41+m* 8,9,11,12

Via TSS 178+m* 8,9,11,12

Via task gate 183+m* 8,9,11,12
RET = Return from CALL:
Within segment 11000011 114+m 11+m 2 8,9
Within seg adding immed to SP 11000010 datalow | datahigh | 114m 11+4m 2 8.9
Intersegment 11001011 15+m 25+m 2 89,1112
intersegment adding immediate to SP{ 11001010 data-low | data-high J 15+m 2 |sg11,12
Protected Mode Only (RET):

To different privilege level 55+m

JENZ = Jump on equal zero rO 1110100 I disp J 7+mor3 | 7+mor3 8
JUJINGE =
Jump on less not greater or equat ﬁ1 111100 I disp] 7+mor3 | 7+mor3 8
JLE/ING =
Jump on less or equal not greater W1 111110 I disp J 7+mor3 | 7+mor3 8
JB/INAE =
Jump on below notabove orequal | 01110010 | disp | 7+mor3 | 7+mor3 8
JBE/UNA =
Jump on below or equal not above 01110110 disp 7+mor3 | 7+mor3 8
JP/JPE = Jump on parity/parityeven | 01111010 disp 7+mor3 | 7+mor3 8
JO =Jump on overflow 01110000 disp 7+mor3 | 7+mor3 8
JS = Jump on sign 01111000 disp 7+mor3 | 7+mor3 8
JNE/INZ =
Jump on not equal not zero r01 110101 | disp J 7+mor3 7+mor 3 8
JNLJGE =
Jump on not less greaterorequal [01111101] dsp | 7+mor3 | 7+mor3 8
JNLENG =
Jump on not less or equal greater I 01111111 I disp] 7+mor3 | 7+mor3 8
JNBWJAE=
Jump on not below above or equal W1 110011 I disp J 7+mor3 | 7+mor3 8
JNBENA =
Jump on not below or equal above 01110111 disp 7+mor3 7+mor3 8
JNP/JPO =Jump on notpar/parodd | 01111011 disp 7+mor3 | 7+mor3 8
JNO = Jump on not overflow 01110001 disp 7+mor3 | 7+mor3 8
JNS = Jump on not sign 01111001 disp 7+mor3 | 7+mor3 8
LOOP =Loop CX Times 11100010 disp 8+mord4 | 8+mord 8
LOOPZ/LOOPE =
Loop while zero equal F 1100001 l disp] 8+mord4 | 8+mord 8
LOOPNZ/LOOPNE =
Loop while not zero equal 11100000 disp 8+mor4 | 8+mord 8
JCXZ = Jump on CX zero 11100011 disp 8+mord4 | 8+mord 8
ENTER = Enter Procedure” 11001000 data-low data-high J L
L=0 1 1 2 9
L=1 15 15 2 9
L>1 16-4(L~1) | 16-4(L-1) 2 9
LEAVE = Leave Procedure* 11001001 5 5 2 9

sIndicates instructions not available in iIAPX 86, 88 microsystems.

See footnotes on page 1-124.

80286

1-121

n AMD

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
Real .VleiunI N ﬂell ‘\fztual
Function Format Mode Mode Mode Mode
CONTROL TRANSFER (Continued):
INT =Interrupt:
Type specified 11001101 ype | 23+m 2
Type 3 11001100 23+m 2
INTO = Interrupt on overflow 11001110 24-mor3| 24-or3 2
(3 if no) (3 if no),
(interrupt) | (interrupt)
Protected Mode Only:
Via interrupt or trap gate to same privilege level 40+m 8,11,12
Via interrupt or trap gate to fit different privilege level 78+m 8,11,12
Via Task Gate 167+m 8,11,12
IRET = Interrupt return 17+m 31+ml 24 89,11,
12,15
Protected Mode Only:
To different privilege level 55+m 89,11,
To different task (NT = 1) 169 +m 8,9,1121',1152
BOUND = Detect value out of range* | 01100010 [modregr/m | 13 13 286
(Use INT]
clock count
if excep-
tion 6)
PROCESSOR CONTROL
CLC =Clear carry 11111000 2 2|
CMC = Complement carry 11110101 2 2
STC=Set carry 11111001 2 2
CLD =Clear direction 11111100 2 2
STD=Set direction 11111101 2 2
CU = Clear interrupt 11111010 3 3 14
STl= Set interrupt 11111011 2 2| 14
HLT =Halt 11110100 2 2| 13
WAIT = Wait 10011011 3 3
LLOCK = Bus lock prefix 11110000 o] 0 14
CTS =Clear task switched flag 00001111 00000110 2 2 3 13
ESC = Processor Extension Escape 10011TTT] modLLL r/ﬂ 9-20* 9-20* 5 17
(TTT LL are opcode to processor extension)
SEG =Segment override prefix 0 0

*Indicates instructions not available in iAPX 86, 88 microsystems.

See footnotes on page 1-124.

1-122

80286

AMD n

80286 INSTRUCTION SET SUMMARY (continued)

Clock Count Comments
Protected Protected
Jou | vl | pew | Vitue
Function Format Mode Mode Mode Mode
PROTECTION CONTROL:
LGDT =
Load global descriptor table register* Iooom 11 1] 0000001 I modo10r/ﬂ 1" 1" 23 | 9,13
SGDT=
Store global descriptor table register* | 0000111 1I 0000001 l modOOOr/m] 11* 11 23 | 9.13
upT=
Load interrupt descriptor table register'l 0000111 1| 0000001] mod 011 r/mJ 12 12* 23 | 9,13
SIDT=
Store interrupt descriptor table register'FO 0001111 | 0000001 I mod 00 1 1/m 12* 12* 23 { 9
LLDT =
Load local descriptor table register
from table memory* moonnl 0000000 | modo10r/m| 17,19* 1 [9.1118
SLDT=
Store local descriptor table register
1o register/memory* [oooo1111| 0000000 l mod 000 r/m 23 1 9
LTR=
Load task register roooonnl 0000000 | mod 0 1 1 /m | Rt d BRI CRRRE]
from register/memory*
STR=
Stors task register to register memory* | 00001 11 1| 0000000 [mod 00 1 m | 2.3 1 |et113
LMSW =
Load machine status word from
register/memory* [00001111 | 0oooo01 [mod110mm I 36" 36 23 | 913
SMSW =
Store machine status word* [o 0001111 | 0000001 | mod 100 m 23" 23 23 | o
Loac acosss rights fr
oad access rights from
register/imemory* [00001111 [0000010 | modreg v | 11et] 1 | 916
LSL=
Load segment limit from
register/memory* r00001 11 1| 0000011 | mod reg r/mJ 14,16" 1 9,16
ARPL=
Adjust requested privilege level
from register/memory* [0 1100011 I mod reg t/m l 10,11* 2 9
VERR=
Verify read access: register/memory® Foom 111] ooooooo] mod 100 r/m 1416] 1 | 918
VERR=
Verify write access*: Wooonnl 0000000 | mod1o1r/m] 14,18 1 | 918

*Indicates instructions not available in iAPX 86, 88 microsystems.
See footnotes on page 1-124.

80266 1-123

n AMD

Footnotes

The effective Address (EA) of the memory operand is
computed according to the mod and r/m fieids:

if mod =11 then r/m is treated as a REG field

if mod =00 then DISP =0", disp-low and disp-high are
absent

it mod=01 then DISP = disp-low sign-extended to 16
bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low
if r/m =000 then EA = (BX) +(S) + DISP

if r/m =001 then EA = (BX) + (D) + DISP

if r/m=010 then EA = (BP) +(SI) + DISP

if r/m =011 then EA = (BP) + (D) + DISP

if /m=100 then EA = (S) + DISP

if /m=101 then EA = (DI) + DISP

it y/m=110 then EA = (BP) + DISP*

if /m=111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if
required).

*Except if mod =00 and r/m =110 then EA =disp-high:
disp-low.

SEGMENT OVERRIDE PREFIX

{ 001reg110]
REG is assigned according to the following:

Segment

REG Register
00 ES
01 cs
10 Ss
1 DS

REG is assigned according to the following tabie:

16-Bit (w=1) 8-Bit (w=0)
000 AX 000 AL
001 CX 001 CL
010 DX 010 DL
011 BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 S 110 DH
111 DI 111 BH

The physical addresses of all operands addressed by
the BP register are computed using the SS segment
register. The physical addresses of the destination op-
erands of the string primitive operations (those ad-
dressed by the DI register) are computed using the ES
segment, which may not be overridden.

1-124 80286

