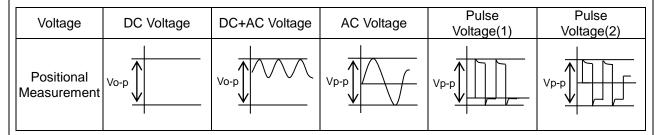


Type SA
Safety Standard Certified Lead Type Disc Ceramic Capacitors for General Purpose


Product specifications in this catalog are as of Oct. 2018, and are subject to change or obsolescence without notice.

Please consult the approval sheet before ordering. Please read rating and Cautions first.

⚠ CAUTION

1. OPERATING VOLTAGE

When DC-rated capacitors are to be used in AC or ripple current circuits, be sure to maintain the Vp-p value of the applied voltage or the Vo-p which contains DC bias within the rated voltage range. When the voltage is started to apply to the circuit or it is stopped applying, the irregular voltage may be generated for a transit period because of resonance or switching. Be sure to use a capacitor within rated voltage containing these irregular voltage.

2. OPERATING TEMPERATURE AND SELF-GENERATED HEAT

Keep the surface temperature of a capacitor below the upper limit of its rated operating temperature range. Be sure to take into account the heat generated by the capacitor itself.

When the capacitor is used in a high-frequency current, pulse current or the like, it may have the self-generated heat due to dielectric-loss. Applied voltage should be the load such as self-generated heat is within 20 °C on the condition of atmosphere temperature 25 °C. When measuring, use a thermocouple of small thermal capacity-K of ϕ 0.1mm and be in the condition where capacitor is not affected by radiant heat of other components and wind of surroundings. Excessive heat may lead to deterioration of the capacitor's characteristics and reliability.(Never attempt to perform measurement with the cooling fan running. Otherwise, accurate measurement cannot be ensured.)

3. TEST CONDITION FOR WITHSTANDING VOLTAGE

(1) TEST EQUIPMENT

Test equipment for AC withstanding voltage should be used with the performance of the wave similar to 50/60 Hz sine wave.

If the distorted sine wave or over load exceeding the specified voltage value is applied, the defective may be caused.

(2) VOLTAGE APPLIED METHOD

When the withstanding voltage is applied, capacitor's lead or terminal should be firmly connected to the out-put of the withstanding voltage test equipment, and then the voltage should be raised from near zero to the test voltage.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, test voltage should be applied with the *zero cross. At the end of the test time, the test voltage should be reduced to near zero, and then capacitor's lead or terminal should be taken off the out-put of the withstanding voltage test equipment.

If the test voltage without the raise from near zero voltage would be applied directly to capacitor, the surge voltage may arise, and therefore, the defective may be caused.

*ZERO CROSS is the point where voltage sine wave pass 0V.

- See the right figure -

voltage sine wave

4. FAIL-SAFE

When capacitor would be broken, failure may result in a short circuit. Be sure to provide an appropriate fail-safe function like a fuse on your product if failure would follow an electric shock, fire or fume.

5. VIBRATION AND IMPACT

Do not expose a capacitor or its leads to excessive shock or vibration during use.

6. SOLDERING

When soldering this product to a PCB/PWB, do not exceed the solder heat resistance specification of the capacitor. Subjecting this product to excessive heating could melt the internal junction solder and may result in thermal shocks that can crack the ceramic element.

When soldering capacitor with a soldering iron, it should be performed in following conditions.

Temperature of iron-tip: 400 °C max. Soldering iron wattage: 50W max. Soldering time: 3.5s max.

7. BONDING, RESIN MOLDING AND COATING

In case of bonding, molding or coating this product, verify that these processes do not affect the quality of capacitor by testing the performance of the bonded, molded or coated product in the intended equipment.

In case of the amount of applications, dryness / hardening conditions of adhesives and molding resins containing organic solvents (ethyl acetate, methyl ethyl ketone, toluene, etc.) are unsuitable, the outer coating resin of a capacitor is damaged by the organic solvents and it may result, worst case, in a short circuit.

The variation in thickness of adhesive, molding resin or coating may cause a outer coating resin cracking and/or ceramic element cracking of a capacitor in a temperature cycling.

8. TREATMENT AFTER BONDING, RESIN MOLDING AND COATING

When the outer coating is hot (over 100 $^{\circ}$ C) after soldering, it becomes soft and fragile. So please be careful not to give it mechanical stress.

Failure to follow the above cautions may result, worst case, in a short circuit and cause fuming or partial dispersion when the product is used.

9. OPERATING AND STORAGE ENVIRONMENT

The insulating coating of capacitors does not form a perfect seal; therefore, do not use or store capacitors in a corrosive atmosphere, especially where chloride gas, sulfide gas, acid, alkali, salt or the like are present. And avoid exposure to moisture. Before cleaning, bonding, or molding this product, verify that these processes do not affect product quality by testing the performance of a cleaned, bonded or molded product in the intended equipment. Store the capacitors where the temperature and relative humidity do not exceed -10 to 40 °C and 15 to 85%.

Use capacitors within 6 months after delivered. Check the solderability after 6 months or more.

10. LIMITATION OF APPLICATIONS

Please contact us before using our products for the applications listed below which require especially high reliability for the prevention of defects which might directly cause damage to the third party's life, body or property.

- 1. Aircraft equipment
- 2. Aerospace equipment
- 3. Undersea equipment
- 4. Power plant control equipment
- 5. Medical equipment
- 6. Transportation equipment (vehicles, trains, ships, etc.)
- 7. Traffic signal equipment
- 8. Disaster prevention / crime prevention equipment
- 9. Data-processing equipment exerting influence on public
- Application of similar complexity and/or reliability requirements to the applications listed in the above.

NOTICE

1. CLEANING (ULTRASONIC CLEANING)

To perform ultrasonic cleaning, observe the following conditions.

Rinse bath capacity: Output of 20 watts per liter or less.

Rinsing time: 5 min maximum.

Do not vibrate the PCB/PWB directly.

Excessive ultrasonic cleaning may lead to fatigue destruction of the lead wires.

2. CAPACITANCE CHANGE OF CAPACITORS

· Class 1 capacitors

Capacitance might change a little depending on a surrounding temperature or an applied voltage. Please contact us if you use for the strict time constant circuit.

· Class 2 and 3 capacitors

Class 2 and 3 capacitors like temperature characteristic B, E and F have an aging characteristic, whereby the capacitor continually decreases its capacitance slightly if the capacitor leaves for a long time. Moreover, capacitance might change greatly depending on a surrounding temperature or an applied voltage. So, it is not likely to be able to use for the time constant circuit.

Please contact us if you need a detail information.

3. PERFORMANCE CHECK BY EQUIPMENT

Before using a capacitor, check that there is no problem in the equipment's performance and the specifications.

Generally speaking, CLASS 2 ceramic capacitors have voltage dependence characteristics and temperature dependence characteristics in capacitance. So, the capacitance value may change depending on the operating condition in a equipment. Therefore, be sure to confirm the apparatus performance of receiving influence in a capacitance value change of a capacitor, such as leakage current and noise suppression characteristic.

Moreover, check the surge-proof ability of a capacitor in the equipment, if needed, because the surge voltage may exceed specific value by the inductance of the circuit.

$oldsymbol{\Lambda}$ note

- 1.Please make sure that your product has been evaluated in view of your specifications with our product being mounted to your product.
- 2. You are requested not to use our product deviating from this specification.

EGD08E

1. Application

This specification is applied to Safety Standard Certified Lead Type Disc Ceramic Capacitors Type SA used for General Electric equipment.

Type SA is Safety Standard Certified disc ceramic capacitor of Class X1, Y2.

Do not use these products in any automotive power train or safety equipment including battery chargers for electric vehicles and plug-in hybrids.

Approval standard and certified number

	Standard number *Certified number		AC Rated volt. V(r.m.s.)
UL	UL60384-14	E37921	
ENEC	ENG0204 44	40042000	V4 000
(VDE)	EN60384-14	40042990	X1:300 Y2:250
CQC	IEC60384-14	CQC15001137840	200
KTC	KC60384-14	HU03008-17009	

^{*}Above Certified number may be changed on account of the revision of standards and the renewal of certification.

2. Rating

2-1. Operating temperature range -40 ~ +125°C

2-2. Rated Voltage X1:AC300V(r.m.s.) Y2:AC250V(r.m.s.)

2-3. Part number configuration

ex.) <u>DE2</u> 471 T02F **B**3 SA А3 Product Temperature Capacitance Type Capacitance Lead Packing Individual characteristic code name tolerance code style code specification

Product code

DE2 denotes class X1,Y2.

•Temperature characteristic

Code	Temperature characteristic					
1X	SL					
B3	В					
E3	E					

Please confirm detailed specification on [Specification and test methods].

• Type name

This denotes safety certified type name Type SA.

• Capacitance

The first two digits denote significant figures; the last digit denotes the multiplier of 10 in pF. ex.) In case of 471.

$$47 \times 10^1 = 470 pF$$

• Capacitance tolerance

Please refer to [Part number list].

• Lead code

Code	Lead style
A *	Vertical crimp long type
J*	Vertical crimp short type
N*	Vertical crimp taping type

^{*} Please refer to [Part number list].

• Packing style code

Code	Packing type
В	Bulk type
Α	Ammo pack taping type

• Individual specification

In case part number cannot be identified without 'individual specification', it is added at the end of part number.

Code	Specification								
T01F	Dielectric strength between lead wires: AC2000V(r.m.s.)	Rated voltage: X1:AC300V(r.m.s.) Y2:AC250V(r.m.s.) Halogen Free							
T02F	Dielectric strength between lead wires: AC2600V(r.m.s.)	Br ≤ 900ppm, Cl ≤ 900ppm Br + Cl ≤ 1500ppm CP wire							

Note) Murata part numbers might be changed depending on lead code or any other changes. Therefore, please specify only the type name(SA) and capacitance of products in the parts list when it is required for applying safety standard of electric equipment.

3. Marking

Type name : SA

Nominal capacitance : Actual value(under 100pF)

3 digit system(100pF and over)

Capacitance tolerance : Code Class code and Rated voltage mark : **X1 300~**

Y2 250~

Manufacturing year : Letter code(The last digit of A.D. year.)

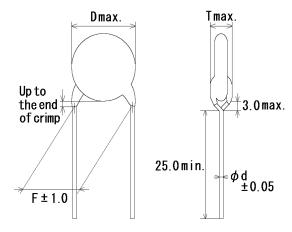
Manufacturing month : Code

 Feb./Mar. → 2
 Aug./Sep. → 8

 Apr./May. → 4
 Oct./Nov. → O

 Jun./Jul. → 6
 Dec./Jan. → D

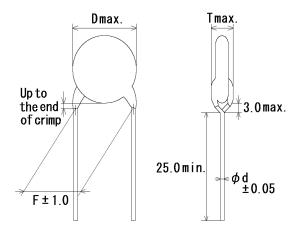
Company name code : M15 (Made in Thailand)


(Example)

SA 471K X1 300~ Y2 250~ 5D (M15

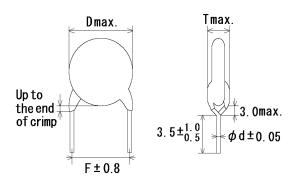
ETSA02A

4. Part number list


·Vertical crimp long type (Lead code:A*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

									OTIIL .	111111
T.C.	Cap.	Сар.	Customer Part Number	Murata Part Number	Din	nensi	on (m	m)	Lead	Pack qty.
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	code	(pcs)
SL	10	±10%		DE21XSA100KA2BT01F	7.0	4.0	5.0	0.6	A2	500
SL	15	±10%		DE21XSA150KA2BT01F	6.0	5.0	5.0	0.6	A2	500
SL	22	±10%		DE21XSA220KA2BT01F	6.0	4.0	5.0	0.6	A2	500
SL	33	±10%		DE21XSA330KA2BT01F	7.0	4.0	5.0	0.6	A2	500
SL	47	±10%		DE21XSA470KA2BT01F	7.0	4.0	5.0	0.6	A2	500
SL	68	±10%		DE21XSA680KA2BT01F	8.0	4.0	5.0	0.6	A2	250
В	100	±10%		DE2B3SA101KA2BT01F	6.0	4.0	5.0	0.6	A2	500
В	150	±10%		DE2B3SA151KA2BT01F	6.0	4.0	5.0	0.6	A2	500
В	220	±10%		DE2B3SA221KA2BT01F	6.0	5.0	5.0	0.6	A2	500
В	330	\pm 10%		DE2B3SA331KA2BT01F	6.0	4.0	5.0	0.6	A2	500
В	470	\pm 10%		DE2B3SA471KA2BT01F	7.0	4.0	5.0	0.6	A2	500
В	680	\pm 10%		DE2B3SA681KA2BT01F	7.0	4.0	5.0	0.6	A2	500
Е	1000	±20%		DE2E3SA102MA2BT01F	6.0	4.0	5.0	0.6	A2	500
Е	1500	±20%		DE2E3SA152MA2BT01F	7.0	4.0	5.0	0.6	A2	500
Е	2200	±20%		DE2E3SA222MA2BT01F	8.0	4.0	5.0	0.6	A2	250
Е	3300	±20%		DE2E3SA332MA2BT01F	9.0	4.0	5.0	0.6	A2	250
Е	4700	±20%		DE2E3SA472MA2BT01F	10.0	5.0	5.0	0.6	A2	250


·Vertical crimp long type (Lead code:A*)

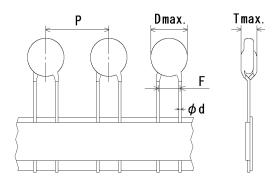
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

				_					Unit :	mm
T.C.	Сар.	Сар.	Customer Part Number	Customer Part Number Murata Part Number Dimension		on (mm)		Lead	Pack	
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE21XSA100KA3BT02F	7.0	4.0	7.5	0.6	А3	250
SL	15	±10%		DE21XSA150KA3BT02F	6.0	5.0	7.5	0.6	А3	500
SL	22	±10%		DE21XSA220KA3BT02F	6.0	4.0	7.5	0.6	А3	500
SL	33	±10%		DE21XSA330KA3BT02F	7.0	4.0	7.5	0.6	А3	250
SL	47	±10%		DE21XSA470KA3BT02F	7.0	4.0	7.5	0.6	А3	250
SL	68	±10%		DE21XSA680KA3BT02F	8.0	4.0	7.5	0.6	А3	250
В	100	±10%		DE2B3SA101KA3BT02F	6.0	4.0	7.5	0.6	А3	500
В	150	±10%		DE2B3SA151KA3BT02F	6.0	4.0	7.5	0.6	А3	500
В	220	±10%		DE2B3SA221KA3BT02F	6.0	5.0	7.5	0.6	А3	500
В	330	±10%		DE2B3SA331KA3BT02F	6.0	4.0	7.5	0.6	А3	500
В	470	\pm 10%		DE2B3SA471KA3BT02F	7.0	4.0	7.5	0.6	А3	250
В	680	\pm 10%		DE2B3SA681KA3BT02F	7.0	4.0	7.5	0.6	А3	250
Е	1000	±20%		DE2E3SA102MA3BT02F	6.0	4.0	7.5	0.6	А3	500
Е	1500	±20%		DE2E3SA152MA3BT02F	7.0	4.0	7.5	0.6	А3	250
Е	2200	±20%		DE2E3SA222MA3BT02F	8.0	4.0	7.5	0.6	А3	250
Е	3300	±20%		DE2E3SA332MA3BT02F	9.0	4.0	7.5	0.6	А3	250
E	4700	±20%		DE2E3SA472MA3BT02F	10.0	5.0	7.5	0.6	А3	250
Е	10000	±20%		DE2E3SA103MA3BT02F	15.0	5.0	7.5	0.6	А3	100

·Vertical crimp short type
(Lead code:J*)

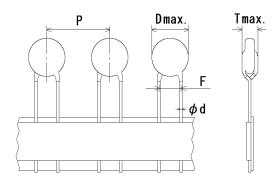
Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

				_					OTIIL .	111111
T.C.	Cap.	Сар.	Customer Part Number	Customer Part Number Murata Part Number Dimension (on (m	m)	Lead	Pack qty.	
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	code	(pcs)
SL	10	±10%		DE21XSA100KJ2BT01F	7.0	4.0	5.0	0.6	J2	500
SL	15	±10%		DE21XSA150KJ2BT01F	6.0	5.0	5.0	0.6	J2	500
SL	22	±10%		DE21XSA220KJ2BT01F	6.0	4.0	5.0	0.6	J2	500
SL	33	±10%		DE21XSA330KJ2BT01F	7.0	4.0	5.0	0.6	J2	500
SL	47	±10%		DE21XSA470KJ2BT01F	7.0	4.0	5.0	0.6	J2	500
SL	68	±10%		DE21XSA680KJ2BT01F	8.0	4.0	5.0	0.6	J2	500
В	100	±10%		DE2B3SA101KJ2BT01F	6.0	4.0	5.0	0.6	J2	500
В	150	±10%		DE2B3SA151KJ2BT01F	6.0	4.0	5.0	0.6	J2	500
В	220	±10%		DE2B3SA221KJ2BT01F	6.0	5.0	5.0	0.6	J2	500
В	330	±10%		DE2B3SA331KJ2BT01F	6.0	4.0	5.0	0.6	J2	500
В	470	±10%		DE2B3SA471KJ2BT01F	7.0	4.0	5.0	0.6	J2	500
В	680	±10%		DE2B3SA681KJ2BT01F	7.0	4.0	5.0	0.6	J2	500
Е	1000	±20%		DE2E3SA102MJ2BT01F	6.0	4.0	5.0	0.6	J2	500
Е	1500	±20%		DE2E3SA152MJ2BT01F	7.0	4.0	5.0	0.6	J2	500
Е	2200	±20%		DE2E3SA222MJ2BT01F	8.0	4.0	5.0	0.6	J2	500
Е	3300	±20%		DE2E3SA332MJ2BT01F	9.0	4.0	5.0	0.6	J2	500
Е	4700	±20%		DE2E3SA472MJ2BT01F	10.0	5.0	5.0	0.6	J2	500


·Vertical crimp short type
(Lead code:J*)

Note) The mark '*' of lead code differ from lead spacing(F) and lead diameter(d).
Please see the following list about details.

L									OTIIL.	111111
T.C.	Сар.	Cap.	Customer Part Number Murata Part Number		Dimension (nm)	Lead	Pack
1.0.	(pF)	tol.	Customer Fait Number	Murata Fart Number	D	Т	F	d	code	qty. (pcs)
SL	10	±10%		DE21XSA100KJ3BT02F	7.0	4.0	7.5	0.6	J3	500
SL	15	±10%		DE21XSA150KJ3BT02F	6.0	5.0	7.5	0.6	J3	500
SL	22	±10%		DE21XSA220KJ3BT02F	6.0	4.0	7.5	0.6	J3	500
SL	33	±10%		DE21XSA330KJ3BT02F	7.0	4.0	7.5	0.6	J3	500
SL	47	±10%		DE21XSA470KJ3BT02F	7.0	4.0	7.5	0.6	J3	500
SL	68	±10%		DE21XSA680KJ3BT02F	8.0	4.0	7.5	0.6	J3	500
В	100	±10%		DE2B3SA101KJ3BT02F	6.0	4.0	7.5	0.6	J3	500
В	150	\pm 10%		DE2B3SA151KJ3BT02F	6.0	4.0	7.5	0.6	J3	500
В	220	±10%		DE2B3SA221KJ3BT02F	6.0	5.0	7.5	0.6	J3	500
В	330	\pm 10%		DE2B3SA331KJ3BT02F	6.0	4.0	7.5	0.6	J3	500
В	470	$\pm 10\%$		DE2B3SA471KJ3BT02F	7.0	4.0	7.5	0.6	J3	500
В	680	$\pm 10\%$		DE2B3SA681KJ3BT02F	7.0	4.0	7.5	0.6	J3	500
Е	1000	$\pm 20\%$		DE2E3SA102MJ3BT02F	6.0	4.0	7.5	0.6	J3	500
Е	1500	$\pm 20\%$		DE2E3SA152MJ3BT02F	7.0	4.0	7.5	0.6	J3	500
Е	2200	\pm 20%		DE2E3SA222MJ3BT02F	8.0	4.0	7.5	0.6	J3	500
Е	3300	$\pm 20\%$		DE2E3SA332MJ3BT02F	9.0	4.0	7.5	0.6	J3	500
Е	4700	±20%		DE2E3SA472MJ3BT02F	10.0	5.0	7.5	0.6	J3	500
Е	10000	±20%		DE2E3SA103MJ3BT02F	15.0	5.0	7.5	0.6	J3	200


Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

										OTIIL .	
T.C.	Cap.	Сар.	Customer Part Number	Murata Part Number		Dimension (mm)				Lead	Pack qty.
1.0.	(pF)	tol.	Oustomer Fart Number	Warata Fart Number	D	Т	F	d	Р	code	(pcs)
SL	10	±10%		DE21XSA100KN2AT01F	7.0	4.0	5.0	0.6	12.7	N2	1500
SL	15	$\pm 10\%$		DE21XSA150KN2AT01F	6.0	5.0	5.0	0.6	12.7	N2	1500
SL	22	$\pm 10\%$		DE21XSA220KN2AT01F	6.0	4.0	5.0	0.6	12.7	N2	1500
SL	33	±10%		DE21XSA330KN2AT01F	7.0	4.0	5.0	0.6	12.7	N2	1500
SL	47	±10%		DE21XSA470KN2AT01F	7.0	4.0	5.0	0.6	12.7	N2	1500
SL	68	±10%		DE21XSA680KN2AT01F	8.0	4.0	5.0	0.6	12.7	N2	1500
В	100	±10%		DE2B3SA101KN2AT01F	6.0	4.0	5.0	0.6	12.7	N2	1500
В	150	±10%		DE2B3SA151KN2AT01F	6.0	4.0	5.0	0.6	12.7	N2	1500
В	220	±10%		DE2B3SA221KN2AT01F	6.0	5.0	5.0	0.6	12.7	N2	1500
В	330	±10%		DE2B3SA331KN2AT01F	6.0	4.0	5.0	0.6	12.7	N2	1500
В	470	±10%		DE2B3SA471KN2AT01F	7.0	4.0	5.0	0.6	12.7	N2	1500
В	680	±10%		DE2B3SA681KN2AT01F	7.0	4.0	5.0	0.6	12.7	N2	1500
Е	1000	±20%		DE2E3SA102MN2AT01F	6.0	4.0	5.0	0.6	12.7	N2	1500
Е	1500	±20%		DE2E3SA152MN2AT01F	7.0	4.0	5.0	0.6	12.7	N2	1500
Е	2200	±20%		DE2E3SA222MN2AT01F	8.0	4.0	5.0	0.6	12.7	N2	1500
Е	3300	±20%		DE2E3SA332MN2AT01F	9.0	4.0	5.0	0.6	12.7	N2	1000
Е	4700	±20%		DE2E3SA472MN2AT01F	10.0	5.0	5.0	0.6	12.7	N2	1000

Vartical crimp taping type (Lead code:N*)

Note) The mark '*' of lead code differ from lead spacing(F), lead diameter(d) and pitch of component(P). Please see the following list or taping specification about details.

										Unit : I	mm
T.C.	Сар.	Сар.	Customer Part Number	Customer Part Number Murata Part Number Dimension		(mm)		Lead	Pack		
1.0.	(pF)	tol.	Customer Fart Number	ividiata i art ivdilibei	D	Т	F	d	Р	code	qty. (pcs)
SL	10	±10%		DE21XSA100KN3AT02F	7.0	4.0	7.5	0.6	15.0	N3	1000
SL	15	$\pm 10\%$		DE21XSA150KN3AT02F	6.0	5.0	7.5	0.6	15.0	N3	1000
SL	22	$\pm 10\%$		DE21XSA220KN3AT02F	6.0	4.0	7.5	0.6	15.0	N3	1000
SL	33	±10%		DE21XSA330KN3AT02F	7.0	4.0	7.5	0.6	15.0	N3	1000
SL	47	±10%		DE21XSA470KN3AT02F	7.0	4.0	7.5	0.6	15.0	N3	1000
SL	68	±10%		DE21XSA680KN3AT02F	8.0	4.0	7.5	0.6	15.0	N3	1000
В	100	±10%		DE2B3SA101KN3AT02F	6.0	4.0	7.5	0.6	15.0	N3	1000
В	150	±10%		DE2B3SA151KN3AT02F	6.0	4.0	7.5	0.6	15.0	N3	1000
В	220	±10%		DE2B3SA221KN3AT02F	6.0	5.0	7.5	0.6	15.0	N3	1000
В	330	$\pm 10\%$		DE2B3SA331KN3AT02F	6.0	4.0	7.5	0.6	15.0	N3	1000
В	470	$\pm 10\%$		DE2B3SA471KN3AT02F	7.0	4.0	7.5	0.6	15.0	N3	1000
В	680	$\pm 10\%$		DE2B3SA681KN3AT02F	7.0	4.0	7.5	0.6	15.0	N3	1000
Е	1000	$\pm 20\%$		DE2E3SA102MN3AT02F	6.0	4.0	7.5	0.6	15.0	N3	1000
Е	1500	$\pm 20\%$		DE2E3SA152MN3AT02F	7.0	4.0	7.5	0.6	15.0	N3	1000
Е	2200	$\pm 20\%$		DE2E3SA222MN3AT02F	8.0	4.0	7.5	0.6	15.0	N3	1000
Е	3300	$\pm 20\%$		DE2E3SA332MN3AT02F	9.0	4.0	7.5	0.6	15.0	N3	1000
Е	4700	±20%		DE2E3SA472MN3AT02F	10.0	5.0	7.5	0.6	15.0	N3	1000
Е	10000	±20%		DE2E3SA103MN7AT02F	15.0	5.0	7.5	0.6	30.0	N7	400

5 00	ecification and test	methods		ererence only	
5. Sp No.	ecification and test		Sne	cification	Test method
1	Appearance and o			fect on appearance	
-			form and dime		for visible evidence of defect.
				[Part number list].	Dimensions should be measured with slide calipers.
2	Marking		To be easily le	gible.	The capacitor should be inspected by naked eyes.
3	Dielectric	Between lead	No failure.		The capacitor should not be damaged when
	strength	wires			AC2000V(r.m.s.) [in case of individual specification
					:T01F] or AC2600V(r.m.s.) [in case of individual specification:T02F] <50/60Hz> is applied between
					the lead wires for 60 s.
		Body	No failure.		First, the terminals of the capacitor should be
		insulation			connected together.
					Then, a metal foil should
					be closely wrapped around
					the body of the capacitor to the distance of Metal About
					about 3 to 4mm
					from each terminal.
					Then, the capacitor should be inserted into a
					container filled with metal balls of about 1mm
					diameter. Finally, AC2600V (r.m.s.)<50/60Hz> is
					applied for 60 s between the capacitor lead wires and metal balls.
4	Insulation Resista	ince (I.R.)	10000MΩ min		The insulation resistance should be measured
•		- \/			with DC500±50V within 60±5 s of charging.
					The voltage should be applied to the capacitor
					through a resistor of $1M\Omega$.
5	Capacitance		Within specifie	ed tolerance.	The capacitance should be measured at 20°C with
6	Discipation Factor	r (D E)	2.5% max.		1±0.1kHz and AC1±0.2V(r.m.s.) max
υ	Dissipation Factor	i (υ.Γ.)	∠.5% max.		The dissipation factor should be measured at 20°C with 1±0.1kHz and AC1±0.2V(r.m.s.) max
7	Temperature char	actoristic	Char St. 125	60 to -1000 pm/°C	The capacitance measurement should be made at
'	Temperature char	acteristic		: +20 to +85°C)	each step specified in Table.
			Char. B: Wit		- The state of the
			Char. E: Wit		
				: -25 to +85°C)	
			, ,		
				Step	1 2 3 4 5
				Temp.(°C)	20±2 -25±2 20±2 85±2 20±2
8	Active flammabilit	·V	The cheese-cl	oth should not be o	n The capacitors should be individually wrapped in at
Ŭ	7 totavo naminaome	.)	fire.	our oriodia riot po o	least one but more than two complete layers of
					cheese-cloth. The capacitor should be subjected to
					20 discharges. The interval between successive
					discharges should be 5 s. The UAc should be maintained for 2min after the last discharge.
					maintained for 2min after the last discharge.
					S1
					\sim
					± \
					Osciloscope
					C1,2 : 1μF±10%, C3 : 0.033μF±5% 10kV
					L1 to L4 : 1.5mH±20% 16A Rod core choke
					R : 100Ω±2%, Ct : 3μF±5% 10kV
					UAc : UR ±5% UR : Rated working voltage
					Cx : Capacitor under test
					F : Fuse, Rated 10A Ut : Voltage applied to Ct
					. voltage applied to Ot
					Ux
					本
					5kV J
					time
² ''C'	expresses nomina	Il capacitance valu	ie(pF)		

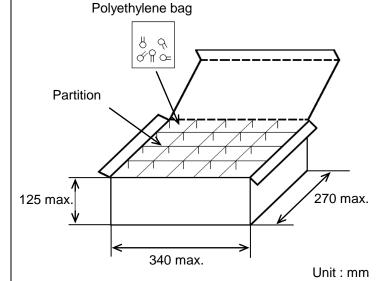
			Reference only			
No.	Item	า	Specification	Test method		
9	Robustness of terminations	Tensile Bending	Lead wire should not cut off. Capacitor should not be broken.	Fix the body of capacitor, apply a tensile weight gradually to each lead wire in the radial direction of capacitor up to 10N and keep it for 10±1 s. With the termination in its normal position, the capacitor is held by its body in such a manner that		
				the axis of the termination is vertical; a mass applying a force of 5N is then suspended from the end of the termination. The body of the capacitor is then inclined, within a period of 2 to 3 s, through an angle of		
				about 90° in the vertical plane and then returned to its initial position over the same period of time; this operation constitutes one bend. One bend immediately followed by a second bend in the opposite direction.		
10	Vibration	Appearance	No marked defect.	The capacitor should be firmly soldered to the		
	resistance	Capacitance	Within the specified tolerance.	supporting lead wire and vibration which is 10 to		
		D.F.	2.5% max.	55Hz in the vibration frequency range,1.5mm in total amplitude, and about 1min in the rate of vibration change from 10Hz to 55Hz and back to 10Hz is applied for a total of 6 h; 2 h each in 3 mutually perpendicular directions.		
11	Solderability of leads		Lead wire should be soldered with uniformly coated on the axial direction over 3/4 of the circumferential direction.	The lead wire of a capacitor should be dipped into a ethanol solution of 25wt% rosin and then into molten solder for 2±0.5 s. In both cases the depth of dipping is up to about 1.5 to 2.0mm from the root of lead wires. Temp. of solder:		
				245±5°C Lead Free Solder (Sn-3Ag-0.5Cu)		
12	Soldering effect (Non-preheat)	Appearance Capacitance change	No marked defect. Within ±10%	Solder temperature: 350±10°C or 260±5°C Immersion time : 3.5±0.5 s (In case of 260±5°C : 10±1 s)		
		I.R.	1000MΩ min.	The depth of immersion is up to about		
		Dielectric strength	Per item 3	1.5 to 2.0mm from the root of lead wires.		
				Thermal insulating 1.5 to 2.0mm Molten solder		
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL)		
				Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.		
13	Soldering effect	Appearance	No marked defect.	First the capacitor should be stored at 120+0/-5°C		
	(On-preheat)	Capacitance	Within ±10%	for 60+0/-5 s.		
		change I.R.	1000MΩ min.	Then, as in figure, the lead wires should be immersed solder of 260+0/-5°C up to 1.5 to 2.0mm from the root of terminal for 7.5+0/-1 s.		
		Dielectric	Per item 3			
		strength		Thermal Capacitor I.5 to 2.0mm		
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *froom condition for 24±2 h before initial measurements.		
10:				(Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.		
*2 "C" expresses nominal capacitance value(pF)						

Reference only							
No.	Flame test Passive flammability		Specification	Test method			
14			The capacitor flame discontinue as follows. Cycle Time 1 to 4 30 s max. 5 60 s max.	The capacitor should be subjected to applied flame for 15 s. and then removed for 15 s until 5 cycle.			
15			The burning time should not be exceeded the time 30 s. The tissue paper should not ignite.	The capacitor under test should be held in the flame in the position which best promotes burning. Time of exposure to flame is for 30 s. Length of flame: 12±1mm Gas burner: Length 35mm min. Inside Dia. 0.5±0.1mm Outside Dia. 0.9mm max. Gas: Butane gas Purity 95% min. About 8mm Gas burner About 10mm thick board			
16	Humidity (Under steady state)	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL : Within $\pm 5\%$ Char. B : Within $\pm 10\%$ Char. E : Within $\pm 15\%$ Char. SL : 2.5% max. Char. B, E : 5.0% max. 3000M Ω min. Per item 3	Set the capacitor for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1 room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1 room condition.			
17	Humidity loading	Appearance Capacitance change D.F. I.R. Dielectric strength	No marked defect. Char. SL: Within ±5% Char. B: Within ±10% Char. E: Within ±15% Char. SL: 2.5% max. Char. B, E: 5.0% max. 3000MΩ min. Per item 3 C. Relative humidity: 45 to 75%. Atmospherical statements and statements are statements.	Apply AC300V(r.m.s.) for 500±12 h at 40±2°C in 90 to 95% relative humidity. Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the AC2000V(r.m.s.) 60s then placed at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL) Post-treatment: Capacitor should be stored for 1 to 2 h at *1room condition.			

^{*1 &}quot;room condition" Temperature: 15 to 35°C, Relative humidity: 45 to 75%, Atmospheric pressure: 86 to 106kPa

	Item)	Specification	Test method			
No. 18	Life	Appearance	No marked defect.	Impulse voltage			
.	Liio	Capacitance	Within ±20%	Each individual capacitor should be subjected to			
		change	VVIIII = 2070	a 5kV impulses for three times. Then the capacito			
		I.R.	3000M $Ω$ min.	are applied to life test.			
		Dielectric	Per item 3	——————————————————————————————————————			
		strength	Fer item 3	100 (%) 90 Front time (T1) = 1.2 μ s=1.67T			
		oog		Time to half-value (T2) = 50μ s			
				30 /			
				0 T t			
				The capacitors are placed in a circulating air over			
				for a period of 1000 h. The air in the oven is maintained at a temperature			
				of 125+2/-0 °C, and relative humidity of 50% max			
				Throughout the test, the capacitors are subjected			
				to a AC425V(r.m.s.)<50/60Hz> alternating voltage of mains frequency, except that once each hour the			
				voltage is increased to AC1000V(r.m.s.) for 0.1 s.			
				Pre-treatment : Capacitor should be stored at			
				125±2°C for 1 h, and apply the			
				AC2000V(r.m.s.) 60s then place			
				at *1room condition for 24±2 h			
				before initial measurements.			
				(Do not apply to Char. SL)			
				Post-treatment :Capacitor should be stored for			
				24±2 h at *1room condition.			
19	Temperature and	Appearance	No marked defect.	The capacitor should be subjected to 5 temperatu			
	immersion cycle	Capacitance	Char. SL: Within ±5%	cycles, then consecutively to 2 immersion cycles.			
		change	Char. B: Within ±10%				
			Char. E: Within ±20%	<temperature cycle=""></temperature>			
		D.F. I.R. Dielectric strength	Char. SL : 2.5% max.	Step Temperature(°C) Time			
			Char. B, E : 5.0% max.	1 -40+0/-3 30 min			
			3000M $Ω$ min.	2 Room temp. 3 min			
			Per item 3	3 +125+3/-0 30 min			
				4 Room temp. 3 min			
				Cycle time:5 cycles			
				<pre></pre> <pre></pre>			
				Immersion			
				Step Temperature(°C) Time water			
				Clean			
				1 +65+5/-0 15 min water			
				Salt			
				2 0±3 15 min water			
				Cycle time:2 cycles			
				Gyold time.2 dyolds			
				Pre-treatment: Capacitor should be stored at 125±2°C for 1 h, and apply the			
				AC2000V(r.m.s.) 60s then placed			
				at *1room condition for 24±2 h before initial measurements. (Do not apply to Char. SL)			
				Post-treatment: Capacitor should be stored for			

6.Packing specification

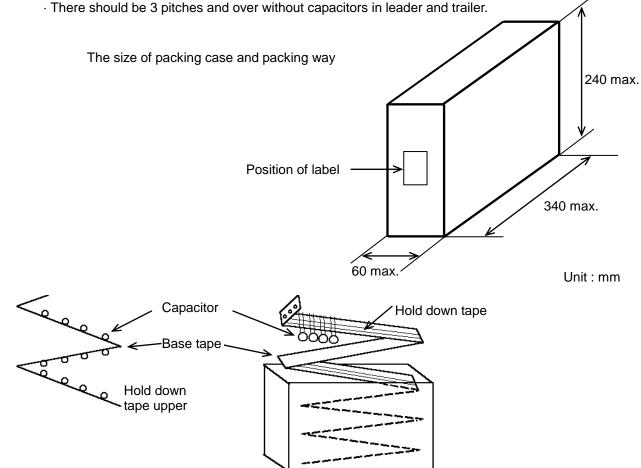

•Bulk type (Packing style code : B)

*1 *2
The number of packing = Packing quantity × n

The size of packing case and packing way

*1 : Please refer to [Part number list].

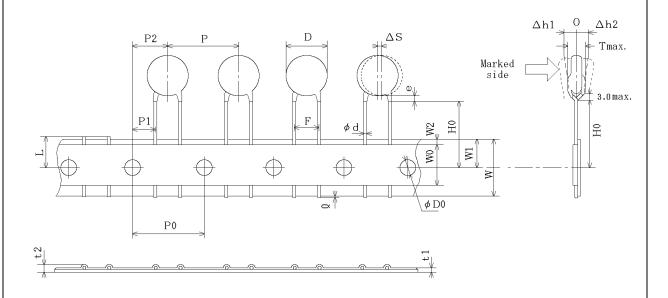
*2 : Standard n = 20 (bag)



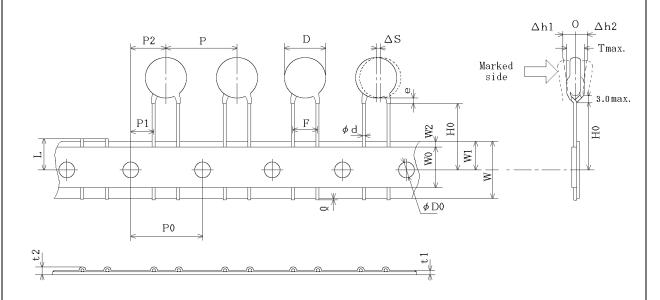
Note)

The outer package and the number of outer packing be changed by the order getting amount.

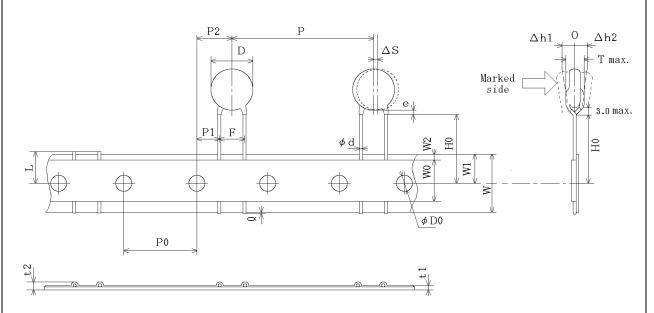
•Ammo pack taping type (Packing style code : A)


- · The tape with capacitors is packed zigzag into a case.
- \cdot When body of the capacitor is piled on other body under it.

7. Taping specification

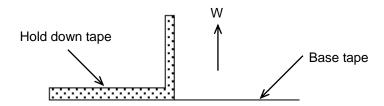

7-1. Dimension of capacitors on tape

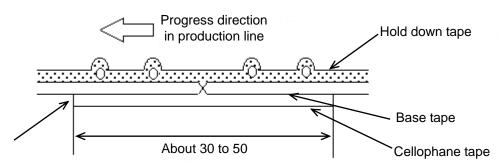
Vertical crimp taping type < Lead code : N2 > Pitch of component 12.7mm / Lead spacing 5.0mm


	ř		
Code	Dimensions	Remarks	
Р	12.7±1.0		
P0	12.7±0.3		
F	$5.0\pm_{0.2}^{0.8}$		
P2	6.35±1.3	Deviation of progress direction	
P1	3.85±0.7		
D	Please refer to [Part number list].		
ΔS	0±1.0	They include deviation by lead bend .	
W	18.0±0.5		
W1	9.0±0.5	Deviation of tape width direction	
110	40.01.2.0		
HU	18.0± ₀		
Q	+0.5~-1.0		
φD0	4.0±0.1		
φd	0.60±0.05		
t1	0.6±0.3		
t2	1.5 max.	They include hold down tape thickness.	
∆h1	1 2		
∆h2 1.0 max.			
L	11.0± _{1.0}		
WO	11.5 min.		
W2	1.5±1.5		
е	Up to the end of crimp		
т	Please refer to [Part number list].		
	P P0 F P1 D ΔS W W1 H0 Q φD0 φd t1 t2 Δh1 Δh2 L W0 W2 e	P 12.7±1.0 P0 12.7±0.3 F $5.0\pm_{0.2}^{0.8}$ P2 6.35 ± 1.3 P1 3.85 ± 0.7 D Please refer to [Pack State of the color of th	

Vertical crimp taping type < Lead code : N3 > Pitch of component 15.0mm / Lead spacing 7.5mm

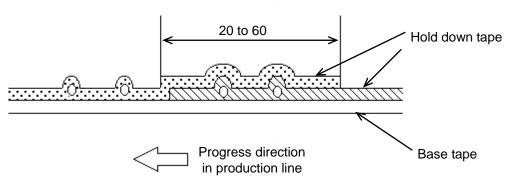
Item		Dimensions	Remarks	
Pitch of component		15.0±2.0		
Pitch of sprocket hole		15.0±0.3		
Lead spacing		7.5±1.0		
Length from hole center to component center	P2	7.5±1.5	Deviation of managed discotion	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction	
Body diameter		Please refer to [Part number list].		
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend .	
Carrier tape width	th W 18.0±0.5			
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and bottom planes	H0	18.0± ^{2.0} ₀		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φ D 0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3		
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	2.0		
Deviation across tape, rear	∆h2	2.0 max.		
Portion to cut in case of defect	L	11.0± _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead	е	Up to the end of crimp		
Body thickness	Т	Please refer to [Part number list].		


Vertical crimp taping type < Lead code : N7 > Pitch of component 30.0mm / Lead spacing 7.5mm


Item	Code	Dimensions	Remarks	
Pitch of component		30.0±2.0		
Pitch of sprocket hole		15.0±0.3		
Lead spacing		7.5±1.0		
Length from hole center to component center	P2	7.5±1.5	Deviation of programs direction	
Length from hole center to lead	P1	3.75±1.0	Deviation of progress direction	
Body diameter		Please refer to [Part number list].	
Deviation along tape, left or right	ΔS	0±2.0	They include deviation by lead bend.	
Carrier tape width	W	18.0±0.5		
Position of sprocket hole	W1	9.0±0.5	Deviation of tape width direction	
Lead distance between reference and bottom planes	H0	18.0± ^{2.0} ₀		
Protrusion length	Q	+0.5~-1.0		
Diameter of sprocket hole	φ D 0	4.0±0.1		
Lead diameter	φd	0.60±0.05		
Total tape thickness	t1	0.6±0.3	The second state of the se	
Total thickness, tape and lead wire	t2	1.5 max.	They include hold down tape thickness.	
Deviation across tape, front	∆h1	2.0 may		
Deviation across tape, rear	∆h2	2.0 max.		
Portion to cut in case of defect	L	11.0± ⁰ _{1.0}		
Hold down tape width	W0	11.5 min.		
Hold down tape position	W2	1.5±1.5		
Coating extension on lead	е	Up to the end of crimp		
Body thickness	Т	Please refer to [Part number list].		

7-2. Splicing way of tape

1) Adhesive force of tape is over 3N at test condition as below.


- 2) Splicing of tape
 - a) When base tape is spliced
 - •Base tape should be spliced by cellophane tape. (Total tape thickness should be less than 1.05mm.)

No lifting for the direction of progressing

Unit: mm

- b) When hold down tape is spliced
 - •Hold down tape should be spliced with overlapping. (Total tape thickness should be less than 1.05mm.)

- c) When both tape are spliced
 - •Base tape and hold down tape should be spliced with splicing tape.
- 3) Missing components
 - •There should be no consecutive missing of more than three components.
 - •The number of missing components should be not more than 0.5% of total components that should be present in a Ammo pack.

EU RoHS and Halogen Free

This products of the following crresponds to EU RoHS and Halogen Free

(1) RoHS

EU RoHs 2011/65/EC compliance

maximum concentration values tolerated by weight in homogeneous materials

- •1000 ppm maximum Lead
- •1000 ppm maximum Mercury
- •100 ppm maximum Cadmium
- •1000 ppm maximum Hexavalent chromium
- •1000 ppm maximum Polybrominated biphenyls (PBB)
- •1000 ppm maximum Polybrominated diphenyl ethers (PBDE)

(2) Halogen-Free

The International Electrochemical Commission's (IEC) Definition of Halogen-Free (IEC 61249-2-21) compliance

- •900 ppm maximum chlorine
- •900 ppm maximum bromine
- •1500 ppm maximum total chlorine and bromine

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Murata:

DE2B3SA331KJ3BT02F	DE2E3SA102MJ3BT02F	DE21XSA100KJ3BT02F	DE2E3SA152MJ3BT02F
DE21XSA330KJ3BT02F	DE2B3SA681KJ3BT02F	DE21XSA470KJ3BT02F	DE2B3SA471KJ3BT02F
DE2E3SA332MJ3BT02F	DE21XSA220KJ3BT02F	DE21XSA150KJ3BT02F	DE2E3SA222MJ3BT02F
DE2B3SA101KJ3BT02F	DE2B3SA151KJ3BT02F	DE2B3SA221KJ3BT02F	DE21XSA680KJ3BT02F
DE2B3SA221KA3BT02F	DE2B3SA681KA3BT02F	DE2E3SA152MA3BT02F	DE21XSA330KA3BT02F
DE21XSA100KN3AT02F	DE21XSA330KN3AT02F	DE21XSA100KA3BT02F	DE2B3SA151KA3BT02F
DE2E3SA222MA3BT02F	DE2B3SA101KA3BT02F	DE21XSA150KA3BT02F	DE21XSA470KN3AT02F
DE2E3SA332MA3BT02F	DE2E3SA152MN3AT02F	DE2E3SA102MA3BT02F	DE2B3SA471KA3BT02F
DE2E3SA222MN3AT02F	DE21XSA220KA3BT02F	DE2B3SA151KN3AT02F	DE21XSA470KA3BT02F
DE2E3SA102MN3AT02F	DE2E3SA332MN3AT02F	DE2B3SA221KN3AT02F	DE2B3SA471KN3AT02F
DE2B3SA331KN3AT02F	DE21XSA680KN3AT02F	DE2B3SA681KN3AT02F	DE21XSA220KN3AT02F
DE2B3SA331KA3BT02F	DE21XSA150KN3AT02F	DE2B3SA101KN3AT02F	DE21XSA680KA3BT02F
DE21XSA220KA2BT01F	DE2B3SA101KA2BT01F	DE21XSA100KA2BT01F	DE21XSA680KN2AT01F
DE2B3SA681KJ2BT01F	DE2E3SA152MJ2BT01F	DE21XSA150KJ2BT01F	DE2E3SA102MA2BT01F
DE2B3SA101KN2AT01F	DE21XSA150KA2BT01F	DE2B3SA331KN2AT01F	DE21XSA470KA2BT01F
DE2E3SA332MJ2BT01F	DE21XSA330KN2AT01F	DE2E3SA472MJ2BT01F	DE21XSA330KJ2BT01F
DE21XSA470KN2AT01F	DE2B3SA471KA2BT01F	DE2E3SA222MA2BT01F	DE2E3SA472MN2AT01F
DE2E3SA102MJ2BT01F	DE21XSA680KA2BT01F	DE2E3SA103MA3BT02F	DE2B3SA681KA2BT01F
DE21XSA220KN2AT01F	DE21XSA680KJ2BT01F	DE2E3SA102MN2AT01F	DE21XSA150KN2AT01F
DE2E3SA332MA2BT01F	DE21XSA470KJ2BT01F	DE2B3SA471KJ2BT01F	DE2E3SA472MA2BT01F
DE2E3SA152MA2BT01F	DE2B3SA151KJ2BT01F	DE2B3SA331KA2BT01F	DE2B3SA101KJ2BT01F
DE21XSA100KN2AT01F	DE2B3SA331KJ2BT01F	DE2B3SA471KN2AT01F	DE2B3SA151KA2BT01F
DE2E3SA103MJ3BT02F	DE2B3SA151KN2AT01F	DE2B3SA221KN2AT01F	DE21XSA330KA2BT01F
DE2E3SA103MN7AT02F	DE2B3SA221KJ2BT01F	DE2E3SA152MN2AT01F	DE2E3SA472MJ3BT02F
DE2B3SA221KA2BT01F	DE2E3SA332MN2AT01F	DE2E3SA472MA3BT02F	DE21XSA220KJ2BT01F