

# Dual Precision JFET-Input Operational Amplifier

**OP215** 

#### 1.0 SCOPE

This specification documents the detailed requirements for Analog Devices space qualified die including die qualification as described for Class K in MIL-PRF-38534, Appendix C, Table C-II except as modified herein.

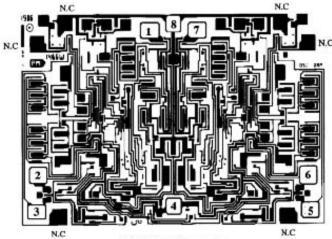
The manufacturing flow described in the STANDARD DIE PRODUCTS PROGRAM brochure at <a href="http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die\_Broc.pdf">http://www.analog.com/marketSolutions/militaryAerospace/pdf/Die\_Broc.pdf</a> is to be considered a part of this specification.

This data sheet specifically details the space grade version of this product. A more detailed operational description and a complete data sheet for commercial product grades can be found at <a href="https://www.analog.com/OP215">www.analog.com/OP215</a>

**2.0 Part Number**. The complete part number(s) of this specification follow:

<u>Part Number</u> <u>Description</u>

OP215-000C Dual Precision JFET-Input Operational Amplifier


**OP215R000C** Radiation Tested Dual Precision JFET-Input Operational Amplifier

#### 3.0 Die Information

#### 3.1 Die Dimensions

| Die Size         | Die Thickness  | Bond Pad<br>Metalization |  |  |
|------------------|----------------|--------------------------|--|--|
| 75 mil x 110 mil | 19 mil ± 2 mil | Al/Cu                    |  |  |

#### 3.2 Die Picture



NOTE: "N.C" - No connection.

- 1 OUTPUT A
- 2 -INPUT A
- 3 +INPUT A
- $4 V_S$
- 5 +INPUT B
- 6 -INPUT B
- 7 OUTPUT B
- $8 + V_S$

ASD0012876 Rev. F Information Humanished by Analog Devices is believed to be accurate and

information turnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective companies.

One Technology Way, P.O. Box 9106, Norwood, MA 02062-9106, U.S.A.

Tel: 781.329.4700 www.analog.com Fax: 781.326.8703 © 2009 Analog Devices, Inc. All rights reserved.

# **OP215**

### 3.3 Absolute Maximum Ratings 1/

| Supply Voltage (V <sub>S</sub> )           | ±22V           |
|--------------------------------------------|----------------|
| Differential Input Voltage                 | ±40V           |
| Input Voltage (V <sub>IN</sub> ) <u>2/</u> | ±20V           |
| Output Short-Circuit Duration              | Indefinite     |
| Storage Temperature Range                  | 65°C to +150°C |
| Junction Temperature (T <sub>J</sub> )     | +150°C         |
| Ambient Operating Temperature              | 55°C to +125°C |

#### Absolute Maximum Ratings Notes:

- 1/ Stresses above the absolute maximum rating may cause permanent damage to the device. Extended operation at the maximum levels may degrade performance and affect reliability.
- <u>2/</u> Unless otherwise specified, the absolute maximum negative input voltage is equal to the negative power supply.

#### 4.0 Die Qualification

In accordance with class-K version of MIL-PRF-38534, Appendix C, Table C-II, except as modified herein.

- (a) Qual Sample Size and Qual Acceptance Criteria 10/0
- (b) Qual Sample Package DIP
- (c) Pre-screen electrical test over temperature performed post-assembly prior to die qualification.

| Table I - Dice Electrical Characteristics |                   |                                                       |       |              |       |  |  |
|-------------------------------------------|-------------------|-------------------------------------------------------|-------|--------------|-------|--|--|
| Parameter                                 | Symbol            | Symbol Conditions $\underline{1/}$                    |       | Limit<br>Max | Units |  |  |
| Input Offset Voltage                      | $V_{IO}$          | $R_S = 50\Omega$                                      |       | ±1           | mV    |  |  |
| Input Offset Current                      | $I_{IO}$          |                                                       |       | ±50          | pA    |  |  |
| Input Bias Current                        | $I_{\mathrm{IB}}$ |                                                       |       | ±100         | pA    |  |  |
| Large Signal Voltage Gain                 | $A_{ m VO}$       | $V_{OUT} = \pm 10V, R_L \ge 2k\Omega$                 | 150   |              | V/mV  |  |  |
| Output Voltage Swing                      | Vo                | $R_L \ge 2k\Omega$                                    | ±11   |              | V     |  |  |
| Supply Current                            | $I_{S}$           | $V_O = 0 V$                                           |       | 8.5          | mA    |  |  |
| Slew Rate                                 | SR                | $A_{VCL} = +1$ , $RL \ge 2k\Omega$ ,<br>$C_L = 100pF$ | 10    |              | V/µs  |  |  |
| Common-Mode Rejection Ratio               | CMRR              | $V_{CM} = IVR$                                        | 86    |              | dB    |  |  |
| Power Supply Rejection Ratio              | PSRR              | $V_S = \pm 10V$ to $\pm 16V$                          |       | 51           | μV/V  |  |  |
| Input Voltage Range                       | IVR               |                                                       | ±10.2 |              | V     |  |  |

#### Table I Notes:

 $1/V_S = \pm 15V$ ,  $V_{CM} = 0$  V, and  $T_A = +25$ °C, unless otherwise specified.

| Table II - Electrical Characteristics for Qual Samples |                   |                                      |                              |                |              |              |       |  |
|--------------------------------------------------------|-------------------|--------------------------------------|------------------------------|----------------|--------------|--------------|-------|--|
| Parameter                                              | Symbol            |                                      | itions<br><u>/</u>           | Sub-<br>groups | Limit<br>Min | Limit<br>Max | Units |  |
| Input Offset Voltage                                   | $V_{IO}$          | $R_S = 50\Omega$                     |                              | 1              |              | ±1           |       |  |
| input Offset Voltage                                   | <b>V</b> 10       |                                      |                              | 2,3            |              | ±2           | mV    |  |
|                                                        |                   |                                      | M, D, L, R                   | 1              |              | ±3           |       |  |
| Input Offset Current 2/                                | $I_{IO}$          | $T_{\rm J} = +25^{\circ}$            | °C, -55°C                    | 1, 3           |              | ±50          | pA    |  |
| input Offset Current <u>27</u>                         | 110               | $T_J = +$                            | 125°C                        | 2              |              | ±8           | nA    |  |
|                                                        |                   |                                      | M, D, L, R                   | 1              |              | ±300         | pA    |  |
| Input Piec Current 2/                                  | T                 | $T_{\rm J} = +25^{\circ}$            | °C, -55°C                    | 1, 3           |              | ±100         | pA    |  |
| Input Bias Current <u>2/</u>                           | $I_{\mathrm{IB}}$ | $T_J = +$                            | 125°C                        | 2              |              | ±10          | nA    |  |
|                                                        |                   |                                      | M, D, L, R                   | 1              |              | ±6           | IIA   |  |
| Larga Signal Waltaga Gain                              | ٨                 | V - 10                               | $0V, R_L \ge 2k\Omega$       | 4              | 150          |              | V/mV  |  |
| Large Signal Voltage Gain                              | $A_{VO}$          | $\mathbf{v}_{\mathrm{OUT}} - \pm 10$ |                              | 5, 6           | 30           |              |       |  |
|                                                        |                   |                                      | M, D, L, R                   | 1              | 10           |              |       |  |
| Output Waltage String 2/                               | V                 | $R_L \ge 2k\Omega$                   |                              | 4              | ±11          |              | V     |  |
| Output Voltage Swing 3/                                | $V_{O}$           | $R_L \ge$                            | 10kΩ                         | 5, 6           | ±12          |              | \ \ \ |  |
| Supply Current                                         | $I_{S}$           | V <sub>O</sub> =                     | = 0 V                        | 1              |              | 8.5          | mA    |  |
|                                                        |                   |                                      | M, D, L, R                   | 4              |              | 8.5          |       |  |
| Slew Rate <u>3</u> /                                   | SR                | $A_{VCL} = +1,$ $C_{L} =$            | $R_L \ge 2k\Omega$ , $100pF$ | 4              | 10           |              | V/µs  |  |
| Common-Mode Rejection                                  | CMRR              | $V_{CM} = IVR$                       |                              | 1              | 86           |              | dB    |  |
| Ratio <u>3</u> /                                       | CIVIKK            |                                      |                              | 2, 3           | 82           |              | uБ    |  |
| Power Supply Rejection                                 | PSRR              | $V_S = \pm 10V$ to $\pm 16V$         |                              | 1              |              | 51           | μV/V  |  |
| Ratio <u>3</u> /                                       | 1 SIXIX           |                                      |                              | 2, 3           |              | 100          |       |  |
| Input Voltage Range <u>3</u> /                         | IVR               |                                      |                              | 1, 2, 3        | ±10.2        |              | V     |  |

#### Table II Notes:

- $1/V_S = \pm 15V$  and  $V_{CM} = 0V$ , unless otherwise specified.
  - $\underline{2/}\ T_A$  = -55°C for  $I_{IO}$  and  $I_{IB}$  tests, subgroup 3, is guaranteed by  $T_A$  = +25°C test.
  - <u>3/</u> Not tested post irradiation.

# **OP215**

| Table III - Life Test Endpoint and Delta Parameter (Product is tested in accordance with Table II with the following exceptions) |                   |                |                    |      |                      |      |               |              |
|----------------------------------------------------------------------------------------------------------------------------------|-------------------|----------------|--------------------|------|----------------------|------|---------------|--------------|
| Doromatar                                                                                                                        | Symbol            | Sub-<br>groups | Post Burn In Limit |      | Post Life Test Limit |      | Life          | Linita       |
| Parameter                                                                                                                        |                   |                | Min                | Max  | Min                  | Max  | Test<br>Delta | Units        |
| Input Offset Voltage                                                                                                             | $V_{IO}$          | 1              |                    | ±2   |                      | ±3   | ±1            | mV           |
|                                                                                                                                  |                   | 2, 3           |                    |      |                      | ±4   |               | 111 <b>V</b> |
| Input Dies Current                                                                                                               | $I_{\mathrm{IB}}$ | 1, 3           |                    | ±175 |                      | ±250 | ±75           | pA           |
| Input Bias Current                                                                                                               |                   | 2              |                    |      |                      | ±10  |               | nA           |
| Input Offset Current                                                                                                             | $I_{IO}$          | 1, 3           |                    | ±87  |                      | ±125 |               | pA           |
|                                                                                                                                  |                   | 2              |                    |      |                      | ±8   |               | nA           |

## 5.0 Life Test/Burn-In Information

- **5.1** HTRB is not applicable for this drawing.
- **5.2** Burn-in is per MIL-STD-883 Method 1015 test condition B or C.
- **5.3** Steady state life test is per MIL-STD-883 Method 1005.

| Rev | Description of Change                                                         | Date          |
|-----|-------------------------------------------------------------------------------|---------------|
| A   | Initiate                                                                      | 06-NOV-01     |
| В   | Add radiation limits. Update web address. Exchange file name with PM108.      | 9-JAN-03      |
| С   | Update 1.0 Scope Description                                                  | 20-Jul-2007   |
| D   | Update header/footer and add to 1.0 Scope description.                        | Mar. 3, 2008  |
| Е   | Add Junction Temperature (T <sub>J</sub> )+150°C to 3.3 Absolute Max. Ratings | April 2, 2008 |
| F   | Updated Section 4.0c note to indicate pre-screen temp testing being performed | 5-JUN-2009    |
|     |                                                                               |               |
|     |                                                                               |               |
|     |                                                                               |               |



www.analog.com