

Current/Voltage Sensors

Description

BST2-IOV2MA are close loop Hall effect current/voltage sensors that accurately measure DC and AC currents/voltages and provide electrical isolation between the current/voltage carrying conductor and the output of the sensor.

Features

- ◆ Fast Response
- ◆ Small Size, Low Cost
- ◆ High Overload Capacity
- ◆ Moisture proof, Shockproof
- ◆ Low Power of Measuring Resistance
- Measures DC, AC and pulsed currents/voltages

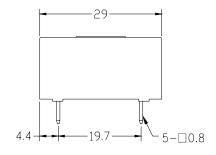
Advantages

- ♦ Very good linearity
- ♦ Excellent accuracy
- ◆ Low temperature drift
- ◆ Optimized response time
- ◆ No insertion losses
- High immunity against external interference
- ◆ Excellent performance and price

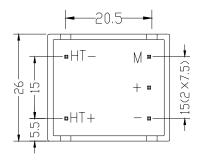
Industrial applications

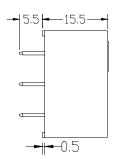
- ◆ Variable speed drivers for motors
- ◆ Welding Equipment
- ◆ Power supply Equipment
- Measure and control system
- Over current protection
- ◆ Protection of power semiconductors

TYPES OF PRODUCTS					
Туре	Primary nominal current r. m. s I _{PN} (mA)	Primary current measuring range I _P (mA)	Measuring resistance $R_M(\Omega)$		
BST2-5IOV2MA	5	5	0~420		
		7.5	50~220		
BST2-10IOV2MA	10	10	0~420		
		15	50~220		

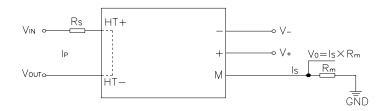

Current/Voltage Sensors

Parameters Table


PARAMETERS	SYMBOL	UNIT	VALUE	CONDITIONS		
Electrical data						
Supply voltage(±5%)	V _C	V	±15			
Normal current	I_{PN}	mA	±5 ±10	BST2-5IOV2MA BST2-10IOV2MA		
Second normal R.M.S current	I_S	mA	±25			
Voltage input limit	U _N	V	1100	1100Vrms or DC MAX		
Current consumption	I_{C}	mA	10mA+ I _s			
Measure resistance	R _m	Ω	Refer to table1	BST2-5IOV2MA BST2-10IOV2MA		
Conversion ratio	K _N		5000:1000 2500:1000	BST2-5IOV2MA BST2-10IOV2MA		
R. m. s voltage for AC isolation test	V _d	KV	5	@50Hz, 1 min		
Accuracy - Dynamic performance data						
Linearity	$\epsilon_{ m L}$	%	<±0.2			
Accuracy	X_{G}	%	<±0.8	@ I_{PN} , $T_A = 25^{\circ}C$		
Offset current	I_{O}	mA	<±0.15	@ $I_P = 0, T_A = 25^{\circ}C$		
Thermal drift of Io	I _{OT}	mA	<±0.25	@ $I_P = 0$, 0°C~+85°C		
Primary internal input resistance	R_{SI}	Ω	630 273	BST2-5IOV2MA BST2-10IOV2MA		
Response time	t _r	μS	<30	DS12-1010 V 21VIA		
General data						
Ambient operating temperature	T _A	$^{\circ}$	-40 ~ +85			
Ambient storage temperature	T_{S}	$^{\circ}\!$	-40 ~ +125			
Secondary coil resistance	R_{SO}	Ω	52	@ T _A =25°C		
Package	Flame retardant plastic case, UL94-V0					


Current/Voltage Sensors

Dimensions BST2-IOV2MA (in mm. 1 mm = 0.0394 inch)



Connection schematic

 I_P is primary current(input)

I_S is second current(output)

R_M is measure resistance

$$I_P = (V_{IN}-V_{OUT})/(R_S+630)$$
 BST2-5IOV2MA

$$I_P = (V_{IN} - V_{OUT})/(R_S + 273)$$
 BST2-10IOV2MA

BST2-IOV2MA

Current/Voltage Sensors

Instructions of use

- 1. When the test current passes through the sensors you can get the size of the output current. (Warning: wrong connection may lead to sensors damage)
- 2. Based on user needs, the sensors output range can be appropriately regulated.
- 3. According to user needs, different rated input currents and output currents of the sensors can be customized.

RESTRICTIONS ON PRODUCT USE

- The information contained herein is subject to change without notice.
- BYD Microelectronics Co., Ltd. (short for BME) exerts the greatest possible effort to ensure high quality and reliability. Nevertheless, semiconductor devices in general can malfunction or fail due to their inherent electrical sensitivity and vulnerability to physical stress. It is the responsibility of the buyer, when utilizing BME products, to comply with the standards of safety in making a safe design for the entire system, including redundancy, fire-prevention measures, and malfunction prevention, to prevent any accidents, fires, or community damage that may ensue. In developing your designs, please ensure that BME products are used within specified operating ranges as set forth in the most recent BME products specifications.
- The BME products listed in this document are intended for usage in general electronics applications (computer, personal equipment, office equipment, measuring equipment, industrial robotics, domestic appliances, etc.). These BME products are neither intended nor warranted for usage in equipment that requires extraordinarily high quality and/or reliability or a malfunction or failure of which may cause loss of human life or bodily injury ("Unintended Usage"). Unintended Usage include atomic energy control instruments, airplane or spaceship instruments, transportation instruments, traffic signal instruments, combustion control instruments, medical instruments, all types of safety devices, etc.. Unintended Usage of BME products listed in this document shall be made at the customer's own risk.