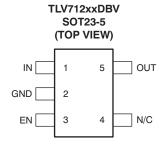
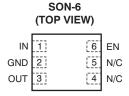
SBVS150A - SEPTEMBER 2010-REVISED JANUARY 2011




# 300-mA, Sub-Bandgap Output Voltage, Low-I<sub>Q</sub>, Low-Dropout Regulator


### **FEATURES**

- 2% Accuracy
- Low I<sub>Q</sub>: 35 μA
- Fixed-Output Voltage Combinations Possible from 0.7 V to 1.15 V<sup>(1)</sup>
- High PSRR: 68 dB at 1 kHz
- Stable with Effective Capacitance of 0.1 μF<sup>(2)</sup>
- Thermal Shutdown and Overcurrent Protection
- Packages: SOT23-5, 1,5-mm x 1,5-mm SON-6
- (1) For output voltage of 1.2 V and higher, see the TLV702 family of devices.
- (2) See the *Input and Output Capacitor Requirements* in the Application Information section.

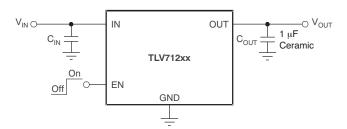
# **APPLICATIONS**

- Wireless Handsets
- Smart Phones, PDAs
- MP3 Players
- ZigBee<sup>®</sup> Networks
- Bluetooth<sup>®</sup> Devices
- Li-lon Operated Handheld Products
- WLAN and Other PC Add-on Cards





TLV712xxDSE


### **DESCRIPTION**

The TLV712xx series of low-dropout linear regulators (LDOs) are low quiescent current devices with excellent line and load transient performance. These devices provide sub-bandgap output voltages; that is, output voltages less than 1.2 V all the way down to 0.7 V. Therefore, these LDOs can be used to power processors with operating voltages less than 1.2 V. These LDOs are designed for power-sensitive applications. A precision bandgap and error amplifier provides overall 2% accuracy. Low output noise, very high power-supply rejection ratio (PSRR), and low-dropout voltage make this series of devices ideal for a wide selection of battery-operated handheld equipment. All device versions have thermal shutdown and current limit for safety.

Furthermore, these devices are stable with an effective output capacitance of only 0.1  $\mu$ F. This feature enables the use of cost-effective capacitors that have higher bias voltages and temperature derating. The devices regulate to specified accuracy with no output load.

The TLV712xxP series also provides an active pull-down circuit to quickly discharge the outputs.

The TLV712xx series of LDO linear regulators are available in SOT23-5 and 1,5-mm x 1,5-mm SON-6 packages.



Typical Application Circuit (Fixed-Voltage Versions)

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.

Bluetooth is a registered trademark of Bluetooth SIG. ZigBee is a registered trademark of the ZigBee Alliance. All other trademarks are the property of their respective owners.





This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

### ORDERING INFORMATION (1)

| PRODUCT | V <sub>OUT</sub> <sup>(2)</sup>                                                                                                                                                                                                                                                                                                                                                                                                                                      |
|---------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|         | <ul> <li>XX(X) is the nominal output voltage. For output voltages with a resolution of 100 mV, two digits are used in the ordering number; otherwise, three digits are used (for example, 09 = 0.9 V; 085 = 0.85 V).</li> <li>P is optional; devices with P have an LDO regulator with an active output discharge.</li> <li>YYY is the package designator.</li> <li>Z is package quantity. Use "R" for reel (3000 pieces), and "T" for tape (250 pieces).</li> </ul> |

- (1) For the most current package and ordering information see the Package Option Addendum at the end of this document, or visit the device product folder at <a href="https://www.ti.com">www.ti.com</a>.
- (2) Output voltages from 0.7 V to 1.15 V in 50-mV increments are available. Contact factory for details and availability.

### **ABSOLUTE MAXIMUM RATINGS**

over operating free-air temperature range (unless otherwise noted)(1)

|                                               |                                                          | VALUE              | VALUE |    |  |  |
|-----------------------------------------------|----------------------------------------------------------|--------------------|-------|----|--|--|
|                                               |                                                          | MIN                | MAX   |    |  |  |
|                                               | IN                                                       | -0.3               | +6.0  | V  |  |  |
| Voltage <sup>(2)</sup>                        | EN                                                       | -0.3               | +6.0  | V  |  |  |
|                                               | OUT                                                      | -0.3               | +5.0  | V  |  |  |
| Current (source)                              | OUT                                                      | Internally limited |       |    |  |  |
| Output short-circuit duration                 |                                                          | Indefinite         |       |    |  |  |
| Tanananatura                                  | Operating junction, T <sub>J</sub>                       | <b>-</b> 55        | +150  | °C |  |  |
| Temperature                                   | Storage, T <sub>stg</sub>                                | -55                | +150  | °C |  |  |
|                                               | Human body model (HBM) QSS 009-105 (JESD22-A114A)        |                    | 2     | kV |  |  |
| Electrostatic Discharge Rating <sup>(3)</sup> | Charged device model (CDM) QSS 009-147 (JESD22-C101B.01) |                    | 500   | V  |  |  |

<sup>(1)</sup> Stresses beyond those listed under absolute maximum ratings may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated under recommended operating conditions is not implied. Exposure to absolute-maximum-rated conditions for extended periods my affect device reliability.

### **DISSIPATION RATINGS**(1)

| PACKAGE | R <sub>θJA</sub> |        | T <sub>A</sub> = +70°C | T <sub>A</sub> = +85°C |
|---------|------------------|--------|------------------------|------------------------|
| DBV     | 200°C/W          | 500 mW | 275 mW                 | 200 mW                 |
| DSE     | 180°C/W          | 555 mW | 305 mW                 | 222 mW                 |

(1) For board details, see the *Thermal Information* section.

<sup>(2)</sup> All voltages are with respect to network ground terminal.

<sup>(3)</sup> ESD testing is performed according to the respective JESD22 JEDEC standard.

www.ti.com

# **ELECTRICAL CHARACTERISTICS**

At  $V_{IN}$  = 2.0 V,  $I_{OUT}$  = 10 mA,  $V_{EN}$  = 0.9 V,  $C_{OUT}$  = 1.0  $\mu F$ , and  $T_J$  = -40°C to +125°C, unless otherwise noted. Typical values are at  $T_J$  = +25°C.

|                              | PARAMETER                                        | TEST CONDITIONS                                                                                                                            | MIN | TYP  | MAX      | UNIT          |
|------------------------------|--------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------|-----|------|----------|---------------|
| $V_{IN}$                     | Input voltage range                              |                                                                                                                                            | 2.0 |      | 5.5      | V             |
| $V_{OUT}$                    | DC output accuracy                               |                                                                                                                                            | -20 | 6    | +20      | mV            |
| $\Delta V_{O}/\Delta V_{IN}$ | Line regulation                                  | $2 \text{ V} \leq \text{V}_{IN} \leq 5.5 \text{ V},$                                                                                       |     | 1    | 5        | mV            |
| $\Delta V_O/\Delta I_{OUT}$  | Load regulation                                  | 0 mA ≤ I <sub>OUT</sub> ≤ 300 mA                                                                                                           |     | 1    | 15       | mV            |
| $I_{CL}$                     | Output current limit                             | $V_{OUT} = 0.9 \times V_{OUT(NOM)}$                                                                                                        | 320 | 500  | 860      | mA            |
|                              | Cround his current                               | I <sub>OUT</sub> = 0 mA                                                                                                                    |     | 35   | 55       | μΑ            |
| $I_{GND}$                    | Ground pin current                               | I <sub>OUT</sub> = 300 mA                                                                                                                  |     | 370  |          | μΑ            |
|                              |                                                  | V <sub>EN</sub> ≤ 0.4 V                                                                                                                    |     | 400  |          | nA            |
| I <sub>SHDN</sub>            | Ground pin current (shutdown)                    | $V_{EN} \le 0.4 \text{ V}, 2.0 \text{ V} \le V_{IN} \le 4.5 \text{ V},$<br>$T_{J} = -40 ^{\circ}\text{C} \text{ to } +85 ^{\circ}\text{C}$ |     | 1    | 2        | μΑ            |
| PSRR                         | Power-supply rejection ratio                     | f = 1 kHz                                                                                                                                  |     | 68   |          | dB            |
| V <sub>N</sub>               | Output noise voltage                             | BW = 100 Hz to 100 kHz,<br>V <sub>OUT</sub> = 0.7 V                                                                                        |     | 30   |          | $\mu V_{RMS}$ |
| t <sub>STR</sub>             | Startup time <sup>(1)</sup>                      | I <sub>OUT</sub> = 300 mA                                                                                                                  |     | 100  |          | μS            |
| $V_{EN(HI)}$                 | Enable pin high (enabled)                        |                                                                                                                                            | 0.9 |      | $V_{IN}$ | V             |
| $V_{EN(LO)}$                 | Enable pin low (disabled)                        |                                                                                                                                            | 0   |      | 0.4      | V             |
| I <sub>EN</sub>              | Enable pin current                               | $V_{IN} = V_{EN} = 5.5 \text{ V}$                                                                                                          |     | 0.04 |          | μΑ            |
| UVLO                         | Undervoltage lockout                             | V <sub>IN</sub> rising                                                                                                                     |     | 1.9  |          | V             |
| R <sub>DISCHARGE</sub>       | Active pull-down resistance (TLV712xxP only)     | V <sub>EN</sub> = 0 V                                                                                                                      |     | 120  |          | Ω             |
| <b>-</b>                     | The arrest all should arrest to a second and the | Shutdown, temperature increasing                                                                                                           |     | +165 |          | °C            |
| $T_{SD}$                     | Thermal shutdown temperature                     | Reset, temperature decreasing                                                                                                              |     | +145 |          | °C            |
| TJ                           | Operating junction temperature                   |                                                                                                                                            | -40 |      | +125     | °C            |

<sup>(1)</sup> Startup time = time from EN assertion to  $0.98 \times V_{OUT(NOM)}$ .



# **FUNCTIONAL BLOCK DIAGRAMS**

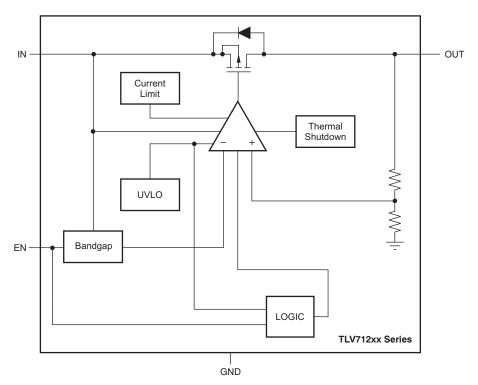



Figure 1. TLV712xx

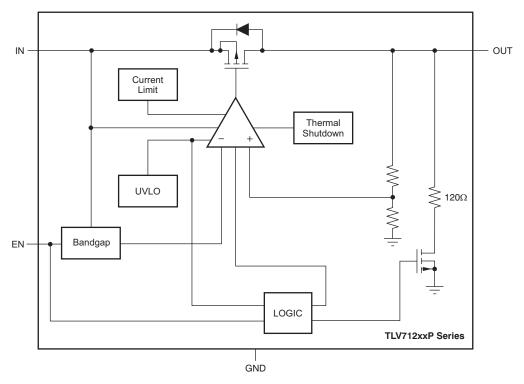



Figure 2. TLV712xxP



# **PIN CONFIGURATIONS**



### **PIN DESCRIPTIONS**

| NAME | SOT23-5<br>DBV | SON-6<br>DSE | DESCRIPTION                                                                                                                                                                                                                                                                                  |
|------|----------------|--------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| IN   | 1              | 1            | Input pin. A small $1-\mu F$ ceramic capacitor is recommended from this pin to ground to assure stability and good transient performance. See <i>Input and Output Capacitor Requirements</i> in the <i>Application Information</i> section for more details.                                 |
| GND  | 2              | 2            | Ground pin                                                                                                                                                                                                                                                                                   |
| EN   | 3              | 6            | Enable pin. Driving EN over 0.9 V turns on the regulator. Driving EN below 0.4 V puts the regulator into shutdown mode and reduces operating current to 1 $\mu$ A, nominal. For TLV712xxP, output voltage is discharged through an internal 120- $\Omega$ resistor when device is shut down. |
| NC   | 4              | 4, 5         | No connection. This pin can be tied to ground to improve thermal dissipation.                                                                                                                                                                                                                |
| OUT  | 5              | 3            | Regulated output voltage pin. A small 1-µF ceramic capacitor is needed from this pin to ground to assure stability. See <i>Input and Output Capacitor Requirements</i> in the <i>Application Information</i> section for more details.                                                       |



### TYPICAL CHARACTERISTICS

Over operating temperature range (T $_J$  = -40°C to +125°C), V $_{IN}$  = 2.0 V, I $_{OUT}$  = 10 mA, V $_{EN}$  = V $_{IN}$ , C $_{OUT}$  = 1.0  $\mu$ F, unless otherwise noted. Typical values are at T $_J$  = +25°C.

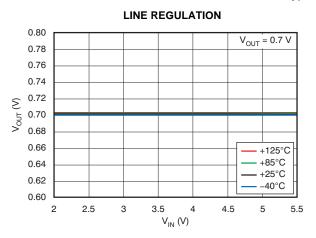



Figure 3.

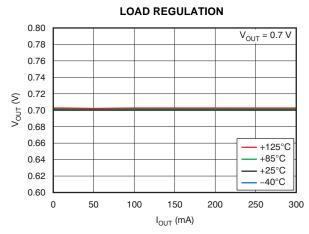



Figure 4.

### **OUTPUT VOLTAGE vs TEMPERATURE**

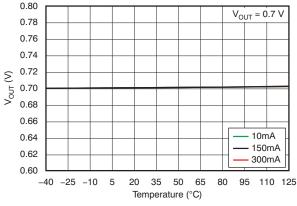
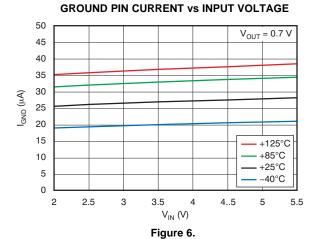




Figure 5.

**GROUND PIN CURRENT vs LOAD** 



**GROUND PIN CURRENT vs TEMPERATURE** 

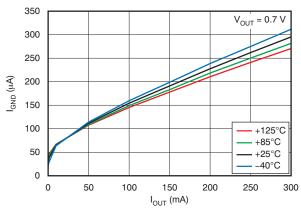
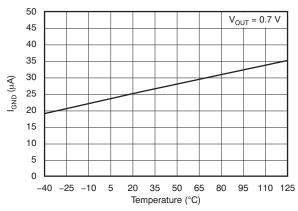
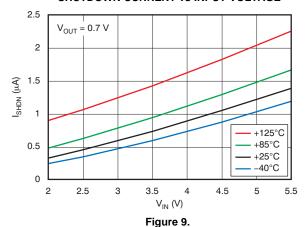



Figure 7.







Figure 8.



# **TYPICAL CHARACTERISTICS (continued)**

Over operating temperature range (T $_J$  = -40°C to +125°C),  $V_{IN}$  = 2.0 V,  $I_{OUT}$  = 10 mA,  $V_{EN}$  =  $V_{IN}$ ,  $C_{OUT}$  = 1.0  $\mu F$ , unless otherwise noted. Typical values are at  $T_J$  = +25°C.

### SHUTDOWN CURRENT vs INPUT VOLTAGE



**CURRENT LIMIT vs INPUT VOLTAGE** 

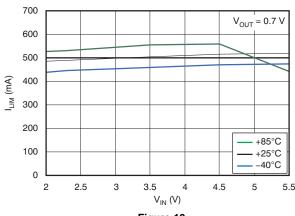
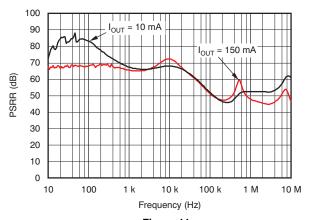




Figure 10.

### POWER-SUPPLY RIPPLE REJECTION vs FREQUENCY



**OUTPUT SPECTRAL NOISE DENSITY vs FREQUENCY** 

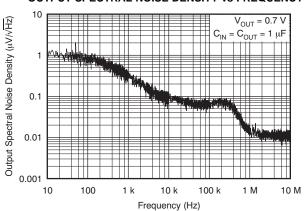



Figure 11.

Figure 12.



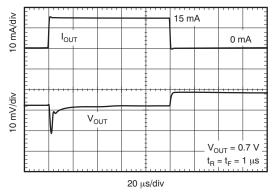



Figure 13.

### LOAD TRANSIENT RESPONSE

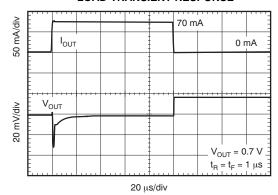



Figure 14.



# **TYPICAL CHARACTERISTICS (continued)**

Over operating temperature range (T $_J$  = -40°C to +125°C),  $V_{IN}$  = 2.0 V,  $I_{OUT}$  = 10 mA,  $V_{EN}$  =  $V_{IN}$ ,  $C_{OUT}$  = 1.0  $\mu F$ , unless otherwise noted. Typical values are at  $T_J$  = +25°C.

# LOAD TRANSIENT RESPONSE

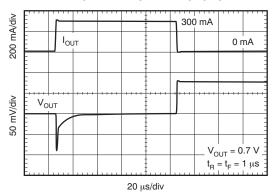



Figure 15.

### LINE TRANSIENT RESPONSE

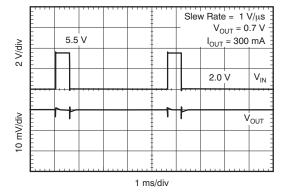



Figure 17.

### LINE TRANSIENT RESPONSE

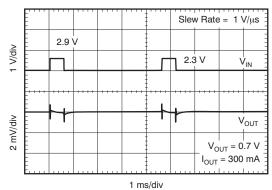



Figure 16.

# $V_{\text{IN}}$ RAMP UP, RAMP DOWN RESPONSE

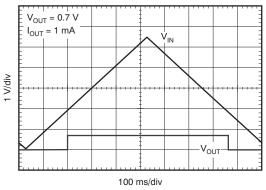



Figure 18.



#### APPLICATION INFORMATION

### **GENERAL DESCRIPTION**

The TLV712xx belongs to a new family of next-generation value LDO regulators. These devices offer sub-bandgap output voltages; that is, output voltages from 1.2 V all the way down to 0.7 V. These devices consume low quiescent current and deliver excellent line and load transient performance. These characteristics, combined with low noise and very good PSRR with little ( $V_{\text{IN}} - V_{\text{OUT}}$ ) headroom, make this family of devices ideal for portable RF applications. This family of regulators offers current limit and thermal protection, and is specified from  $-40^{\circ}\text{C}$  to  $+125^{\circ}\text{C}$ .

# INPUT AND OUTPUT CAPACITOR REQUIREMENTS

1.0- $\mu F$  X5R- and X7R-type ceramic capacitors are recommended because these capacitors have minimal variation in value and equivalent series resistance (ESR) over temperature.

However, the TLV712xx is designed to be stable with an effective capacitance of 0.1  $\mu F$  or larger at the output. Thus, the device is stable with capacitors of other dielectric types as well, as long as the effective capacitance under operating bias voltage and temperature is greater than 0.1  $\mu$ F. This effective capacitance refers to the capacitance that the LDO sees under operating bias voltage and temperature conditions; that is, the capacitance after taking both voltage and temperature bias derating consideration. In addition to allowing the use of lower-cost dielectrics, this capability of being stable with 0.1-µF effective capacitance also enables the use of smaller footprint capacitors that have higher derating in size- and space-constrained applications.

**NOTE:** Using a 0.1- $\mu$ F rated capacitor at the output of the LDO does not ensure stability because the effective capacitance under the specified operating conditions would be less than 0.1  $\mu$ F. Maximum ESR should be less than 200 m $\Omega$ .

Although an input capacitor is not required for stability, it is good analog design practice to connect a 0.1- $\mu F$  to 1.0- $\mu F$ , low ESR capacitor across the IN pin and GND pin of the regulator. This capacitor counteracts reactive input sources and improves transient response, noise rejection, and ripple rejection. A higher-value capacitor may be necessary if large, fast rise-time load transients are anticipated, or if the device is not located close to the power source. If source impedance is more than 2  $\Omega$ , a 0.1- $\mu F$  input capacitor may be necessary to ensure stability.

# BOARD LAYOUT RECOMMENDATIONS TO IMPROVE PSRR AND NOISE PERFORMANCE

Input and output capacitors should be placed as close to the device pins as possible. To improve ac performance such as PSRR, output noise, and transient response, it is recommended that the board be designed with separate ground planes for  $V_{\text{IN}}$  and  $V_{\text{OUT}},$  with the ground plane connected only at the GND pin of the device. In addition, the ground connection for the output capacitor should be connected directly to the GND pin of the device. High ESR capacitors may degrade PSRR performance.

### INTERNAL CURRENT LIMIT

The TLV712xx internal current limit helps to protect the regulator during fault conditions. During current limit, the output sources a fixed amount of current that is largely independent of the output voltage. In such a case, the output voltage is not regulated, and is  $V_{OUT} = I_{LIMIT} \times R_{LOAD}$ . The PMOS pass transistor dissipates  $(V_{IN} - V_{OUT}) \times I_{LIMIT}$  until thermal shutdown is triggered and the device turns off. As the device cools, it is turned on by the internal thermal shutdown circuit. If the fault condition continues, the device cycles between current limit and thermal shutdown. See the *Thermal Information* section for more details.

The PMOS pass element in the TLV712xx has a built-in body diode that conducts current when the voltage at OUT exceeds the voltage at IN. This current is not limited, so if extended reverse voltage operation is anticipated, external limiting to 5% of the rated output current is recommended.

### **SHUTDOWN**

The enable pin (EN) is active high. The device is enabled when voltage at EN pin goes above 0.9 V. This relatively lower voltage value required to turn on the LDO can also be used to power the device when it is connected to a GPIO of a newer processor, where the GPIO Logic 1 voltage level is lower than that of traditional microcontrollers. The device is turned off when the EN pin is held at less than 0.4 V. When shutdown capability is not required, EN can be connected to the IN pin.

The TLV712xxP version has internal active pull-down circuitry that discharges the output with a time constant of:

$$\tau = \frac{(120 \bullet R_L)}{(120 + R_L)} \bullet C_{OUT}$$

where:

- R<sub>I</sub> = Load resistance
- $C_{OUT} = Output capacitor$  (1)



### **DROPOUT VOLTAGE**

The TLV712xx uses a PMOS pass transistor to achieve low dropout. For the complete output voltage range of 0.7 V to 1.2 V, the device can supply 300 mA with a rated minimum input voltage of 2.0 V. Note that the dropout voltage specification is not relevant for the TLV712xx family of devices because the output voltage range of the device does not exceed 1.2 V and the minimum input voltage for the device is 2.0 V.

### TRANSIENT RESPONSE

As with any regulator, increasing the size of the output capacitor reduces over-/undershoot magnitude but increases the duration of the transient response.

### **UNDERVOLTAGE LOCKOUT (UVLO)**

The TLV712xx uses an undervoltage lockout circuit to keep the output shut off until internal circuitry is operating properly.

### THERMAL INFORMATION

Thermal protection disables the output when the junction temperature rises to approximately +165°C, allowing the device to cool. When the junction temperature cools to approximately +145°C, the output circuitry is again enabled. Depending on power dissipation, thermal resistance, and ambient temperature, the thermal protection circuit may cycle on and off. This cycling limits the dissipation of the regulator, protecting it from damage as a result of overheating.

Any tendency to activate the thermal protection circuit indicates excessive power dissipation or an inadequate heatsink. For reliable operation, junction temperature should be limited to +125°C maximum.

To estimate the margin of safety in a complete design (including heatsink), increase the ambient temperature until the thermal protection is triggered; use worst-case loads and signal conditions.

The internal protection circuitry of the TLV712xx has been designed to protect against overload conditions. It was not intended to replace proper heatsinking. Continuously running the TLV712xx into thermal shutdown degrades device reliability.

### POWER DISSIPATION

The ability to remove heat from the die is different for each package type, presenting different considerations in the printed circuit board (PCB) layout. The PCB area around the device that is free of other components moves the heat from the device to the ambient air.

Thermal performance data for TLV712xx were gathered using the TLV700 evaluation module (EVM), a two-layer board with two ounces of copper per side. The dimensions and layout for the SOT23-5 package EVM are shown in Figure 19 and Figure 20. Corresponding thermal performance data are given in Table 1. Note that this board has provision for soldering not only the SOT23-5 package on the bottom layer, but also an SC-70 package on the top layer. The dimensions and layout of the SON-6 (DSE) package EVM are shown in Figure 21 and Figure 22. Corresponding thermal performance data are given in Table 1. Using heavier copper increases the effectiveness in removing heat from the device. The addition of plated through-holes to heat-dissipating layers also improves heatsink effectiveness.

Power dissipation depends on input voltage and load conditions. Power dissipation  $(P_D)$  is equal to the product of the output current and the voltage drop across the output pass element, as shown in Equation 2.

$$P_{D} = (V_{IN} - V_{OUT}) \times I_{OUT}$$
 (2)

### **PACKAGE MOUNTING**

Solder pad footprint recommendations for the TLV712xx are available from the Texas Instruments web site at www.ti.com. The recommended land pattern for the DBV and DSE packages are shown in Figure 23 and Figure 24 respectively.

Table 1. EVM Dissipation Ratings

| PACKAGE | GE $R_{\theta JA}$ $T_A < +2$ |        | T <sub>A</sub> = +70°C | T <sub>A</sub> = +85°C |  |  |
|---------|-------------------------------|--------|------------------------|------------------------|--|--|
| DBV     | 200°C/W                       | 500 mW | 275 mW                 | 200 mW                 |  |  |
| DSE     | 180°C/W                       | 555 mW | 305 mW                 | 222 mW                 |  |  |



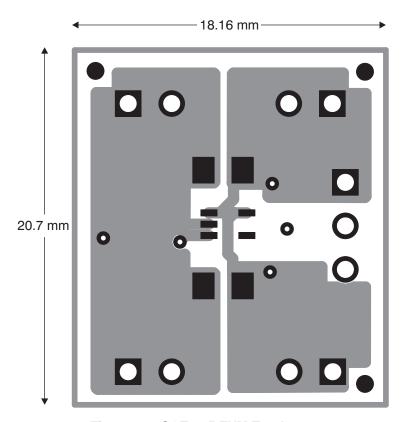



Figure 19. SOT23-5 EVM Top Layer

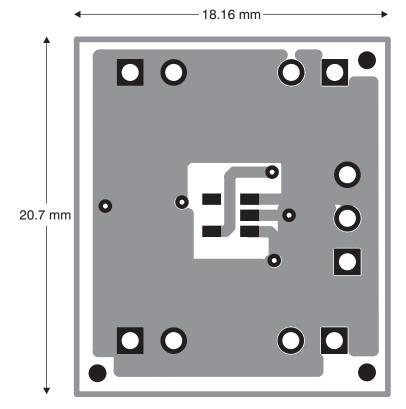



Figure 20. SOT23-5EVM Bottom Layer



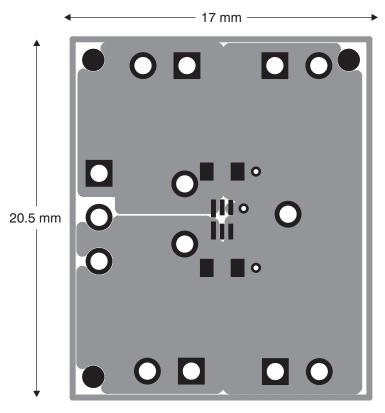



Figure 21. DSE EVM Top Layer

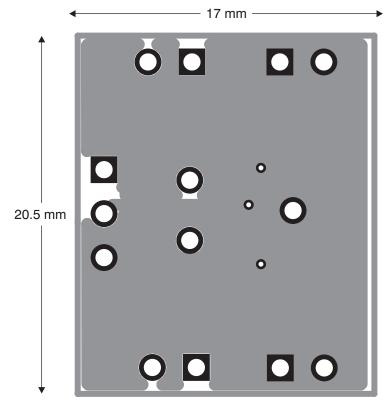
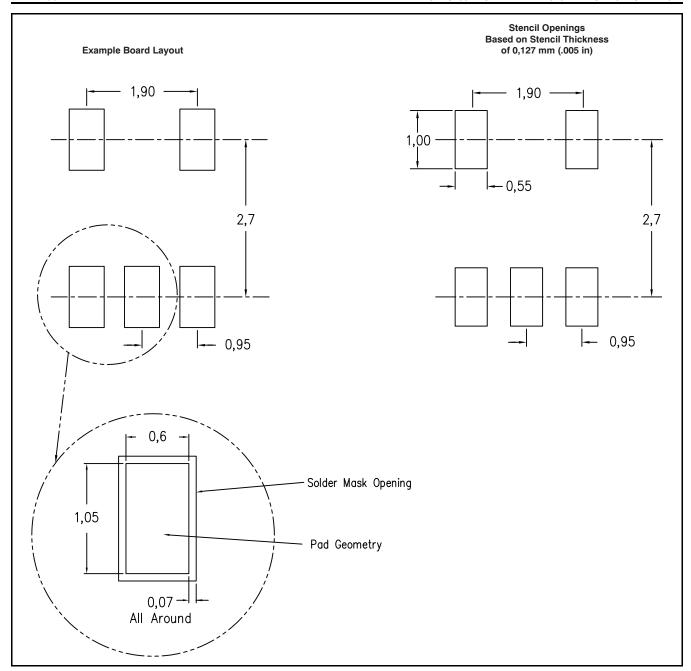
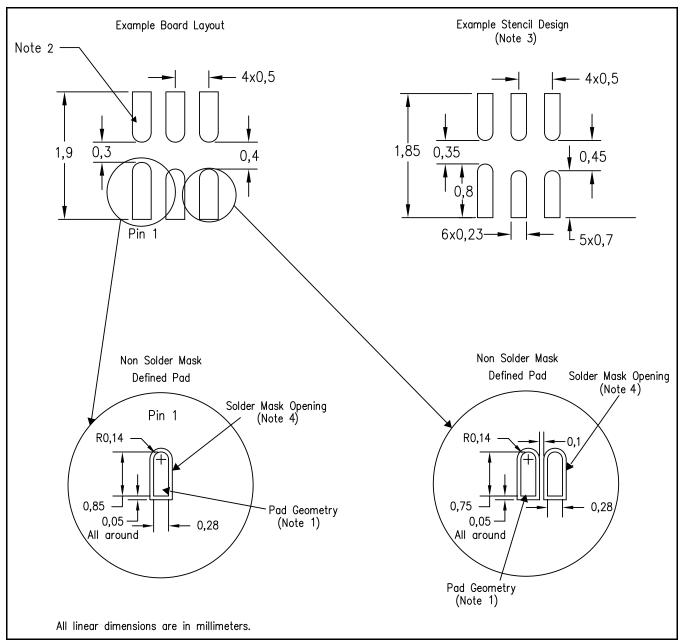




Figure 22. DSE EVM Bottom Layer


www.ti.com



- (1) All linear dimensions are in millimeters.
- (2) Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- (3) Publication IPC-7351 is recommended for alternate designs.
- (4) Laser-cutting apertures with trapedzoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric load solder paste. Refer to IPC-7525 for other stencil recommendations.

Figure 23. Recommended Land Pattern for DBV Package





- (1) Publication IPC-7351 is recommended for alternate designs.
- (2) For more information, refer to TI application notes SCBA017 and SLUA271 (Quad Flatpack No-Lead Logic Packages and QFN/SON PCB Attachment, respectively) for specific thermal information, via requirements, and additional recommendations for board layout. These documents are available at the Texas Instruments web site (http://www.ti.com) by searching for the literature number.
- (3) Laser-cutting apertures with trapedzoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for stencil design considerations.
- (4) Customers should contact their board fabrication site for minimum solder mask tolerances between signal pads.

Figure 24. Recommended Land Pattern for DSE Package

### www.ti.com

# **REVISION HISTORY**

NOTE: Page numbers for previous revisions may differ from page numbers in the current version.

| C | nanges from Original (September, 2010) to Revision A                                       | Page |
|---|--------------------------------------------------------------------------------------------|------|
| • | Added SON package description to Features list                                             | 1    |
| • | Added SON-6 package (preview) pin drawing to front page                                    | 1    |
| • | Revised last paragraph of Description section to include information about DSE package     | 1    |
| • | Updated Ordering Information table                                                         | 2    |
| • | Revised Dissipation Ratings table to show DSE package information                          | 2    |
| • | Added DSE package pinout (preview) and pin configuration information                       | 5    |
| • | Updated Package Mounting and Power Dissipation sections to reflect DSE package information | 10   |
| • | Added Figure 21 and Figure 22                                                              | 12   |
| • | Added Figure 24                                                                            | 14   |
|   |                                                                                            |      |





23-Aug-2016

### PACKAGING INFORMATION

| Orderable Device | Status | Package Type | Package<br>Drawing | Pins | Package<br>Qty | Eco Plan                   | Lead/Ball Finish           | MSL Peak Temp      | Op Temp (°C) | Device Marking<br>(4/5) | Samples |
|------------------|--------|--------------|--------------------|------|----------------|----------------------------|----------------------------|--------------------|--------------|-------------------------|---------|
| TLV71209DBVR     | ACTIVE | SOT-23       | DBV                | 5    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | QVO                     | Samples |
| TLV71209DBVT     | ACTIVE | SOT-23       | DBV                | 5    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | QVO                     | Samples |
| TLV71210DBVR     | ACTIVE | SOT-23       | DBV                | 5    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | SAR                     | Samples |
| TLV71210DBVT     | ACTIVE | SOT-23       | DBV                | 5    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | SAR                     | Samples |
| TLV71210DSER     | ACTIVE | WSON         | DSE                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | RX                      | Samples |
| TLV71210DSET     | ACTIVE | WSON         | DSE                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | RX                      | Samples |
| TLV71211DBVR     | ACTIVE | SOT-23       | DBV                | 5    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | SDK                     | Samples |
| TLV71211DBVT     | ACTIVE | SOT-23       | DBV                | 5    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU                  | Level-1-260C-UNLIM | -40 to 125   | SDK                     | Samples |
| TLV71211DSER     | ACTIVE | WSON         | DSE                | 6    | 3000           | Green (RoHS<br>& no Sb/Br) | CU NIPDAU  <br>CU NIPDAUAG | Level-1-260C-UNLIM | -40 to 125   | YI                      | Samples |
| TLV71211DSET     | ACTIVE | WSON         | DSE                | 6    | 250            | Green (RoHS<br>& no Sb/Br) | CU NIPDAU  <br>CU NIPDAUAG | Level-1-260C-UNLIM | -40 to 125   | YI                      | Samples |

(1) The marketing status values are defined as follows:

**ACTIVE:** Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

**OBSOLETE:** TI has discontinued the production of the device.

**TBD:** The Pb-Free/Green conversion plan has not been defined.

**Pb-Free (RoHS):** TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

**Pb-Free (RoHS Exempt):** This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

<sup>(2)</sup> Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

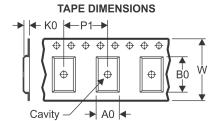


# PACKAGE OPTION ADDENDUM

23-Aug-2016

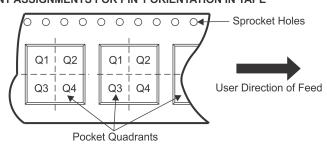
- (3) MSL, Peak Temp. The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.
- (4) There may be additional marking, which relates to the logo, the lot trace code information, or the environmental category on the device.
- (5) Multiple Device Markings will be inside parentheses. Only one Device Marking contained in parentheses and separated by a "~" will appear on a device. If a line is indented then it is a continuation of the previous line and the two combined represent the entire Device Marking for that device.
- (6) Lead/Ball Finish Orderable Devices may have multiple material finish options. Finish options are separated by a vertical ruled line. Lead/Ball Finish values may wrap to two lines if the finish value exceeds the maximum column width.

**Important Information and Disclaimer:** The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.


In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.

PACKAGE MATERIALS INFORMATION

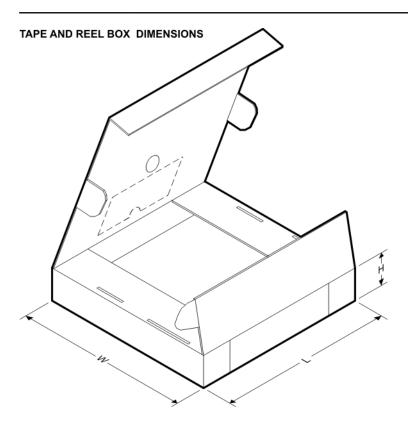
www.ti.com 3-Aug-2017


# TAPE AND REEL INFORMATION



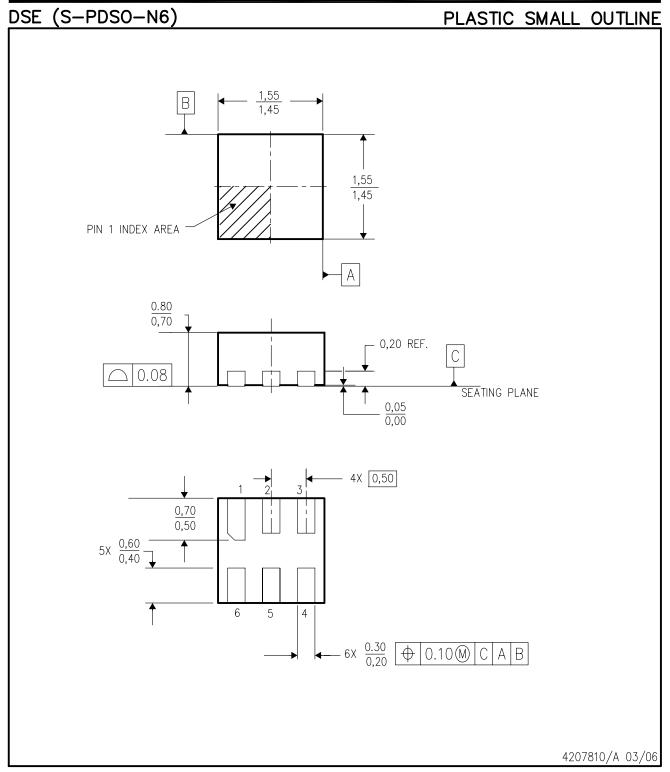


|    | Dimension designed to accommodate the component width     |
|----|-----------------------------------------------------------|
|    | Dimension designed to accommodate the component length    |
| K0 | Dimension designed to accommodate the component thickness |
| W  | Overall width of the carrier tape                         |
| P1 | Pitch between successive cavity centers                   |


QUADRANT ASSIGNMENTS FOR PIN 1 ORIENTATION IN TAPE



\*All dimensions are nominal


| Device       | Package<br>Type | Package<br>Drawing | Pins | SPQ  | Reel<br>Diameter<br>(mm) | Reel<br>Width<br>W1 (mm) | A0<br>(mm) | B0<br>(mm) | K0<br>(mm) | P1<br>(mm) | W<br>(mm) | Pin1<br>Quadrant |
|--------------|-----------------|--------------------|------|------|--------------------------|--------------------------|------------|------------|------------|------------|-----------|------------------|
| TLV71209DBVR | SOT-23          | DBV                | 5    | 3000 | 178.0                    | 9.0                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71209DBVR | SOT-23          | DBV                | 5    | 3000 | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71209DBVT | SOT-23          | DBV                | 5    | 250  | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71209DBVT | SOT-23          | DBV                | 5    | 250  | 178.0                    | 8.4                      | 3.3        | 3.2        | 1.4        | 4.0        | 8.0       | Q3               |
| TLV71210DBVR | SOT-23          | DBV                | 5    | 3000 | 178.0                    | 9.0                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71210DBVR | SOT-23          | DBV                | 5    | 3000 | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71210DBVT | SOT-23          | DBV                | 5    | 250  | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71210DBVT | SOT-23          | DBV                | 5    | 250  | 178.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71210DSER | WSON            | DSE                | 6    | 3000 | 180.0                    | 8.4                      | 1.83       | 1.83       | 0.89       | 4.0        | 8.0       | Q2               |
| TLV71210DSET | WSON            | DSE                | 6    | 250  | 180.0                    | 8.4                      | 1.83       | 1.83       | 0.89       | 4.0        | 8.0       | Q2               |
| TLV71211DBVR | SOT-23          | DBV                | 5    | 3000 | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71211DBVT | SOT-23          | DBV                | 5    | 250  | 180.0                    | 8.4                      | 3.23       | 3.17       | 1.37       | 4.0        | 8.0       | Q3               |
| TLV71211DSER | WSON            | DSE                | 6    | 3000 | 180.0                    | 8.4                      | 1.83       | 1.83       | 0.89       | 4.0        | 8.0       | Q2               |
| TLV71211DSER | WSON            | DSE                | 6    | 3000 | 179.0                    | 8.4                      | 1.8        | 1.8        | 1.0        | 4.0        | 8.0       | Q2               |
| TLV71211DSET | WSON            | DSE                | 6    | 250  | 180.0                    | 8.4                      | 1.83       | 1.83       | 0.89       | 4.0        | 8.0       | Q2               |
| TLV71211DSET | WSON            | DSE                | 6    | 250  | 179.0                    | 8.4                      | 1.8        | 1.8        | 1.0        | 4.0        | 8.0       | Q2               |

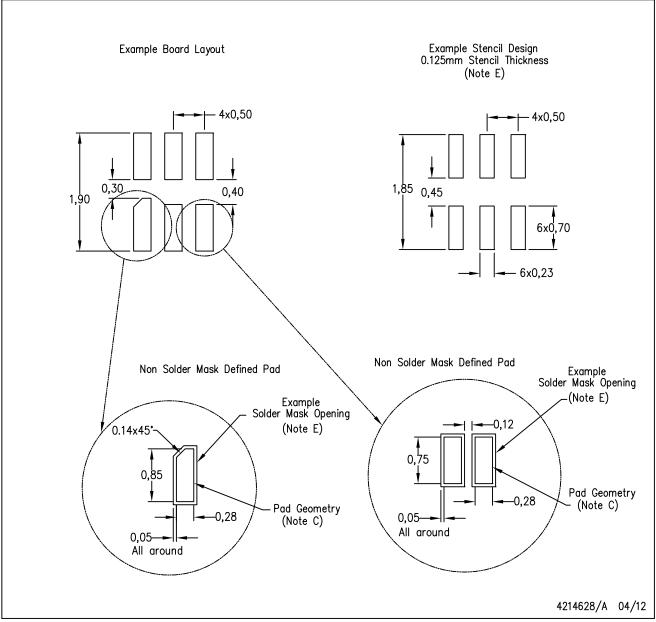
www.ti.com 3-Aug-2017



\*All dimensions are nominal

| Device       | Package Type | Package Drawing | Pins | SPQ  | Length (mm) | Width (mm) | Height (mm) |
|--------------|--------------|-----------------|------|------|-------------|------------|-------------|
| TLV71209DBVR | SOT-23       | DBV             | 5    | 3000 | 180.0       | 180.0      | 18.0        |
| TLV71209DBVR | SOT-23       | DBV             | 5    | 3000 | 183.0       | 183.0      | 20.0        |
| TLV71209DBVT | SOT-23       | DBV             | 5    | 250  | 183.0       | 183.0      | 20.0        |
| TLV71209DBVT | SOT-23       | DBV             | 5    | 250  | 180.0       | 180.0      | 18.0        |
| TLV71210DBVR | SOT-23       | DBV             | 5    | 3000 | 180.0       | 180.0      | 18.0        |
| TLV71210DBVR | SOT-23       | DBV             | 5    | 3000 | 202.0       | 201.0      | 28.0        |
| TLV71210DBVT | SOT-23       | DBV             | 5    | 250  | 202.0       | 201.0      | 28.0        |
| TLV71210DBVT | SOT-23       | DBV             | 5    | 250  | 180.0       | 180.0      | 18.0        |
| TLV71210DSER | WSON         | DSE             | 6    | 3000 | 202.0       | 201.0      | 28.0        |
| TLV71210DSET | WSON         | DSE             | 6    | 250  | 202.0       | 201.0      | 28.0        |
| TLV71211DBVR | SOT-23       | DBV             | 5    | 3000 | 202.0       | 201.0      | 28.0        |
| TLV71211DBVT | SOT-23       | DBV             | 5    | 250  | 202.0       | 201.0      | 28.0        |
| TLV71211DSER | WSON         | DSE             | 6    | 3000 | 202.0       | 201.0      | 28.0        |
| TLV71211DSER | WSON         | DSE             | 6    | 3000 | 203.0       | 203.0      | 35.0        |
| TLV71211DSET | WSON         | DSE             | 6    | 250  | 202.0       | 201.0      | 28.0        |
| TLV71211DSET | WSON         | DSE             | 6    | 250  | 203.0       | 203.0      | 35.0        |




NOTES: A. All linear dimensions are in millimeters.

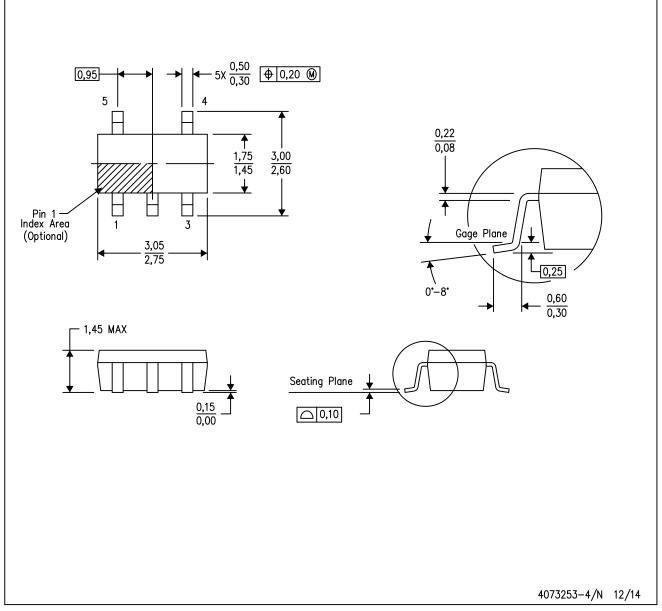
- B. This drawing is subject to change without notice.
- C. Small Outline No-Lead (SON) package configuration.
- D. This package is lead-free.



# DSE (S-PWSON-N6)

# PLASTIC SMALL OUTLINE NO-LEAD




NOTES: A. All linear dimensions are in millimeters.

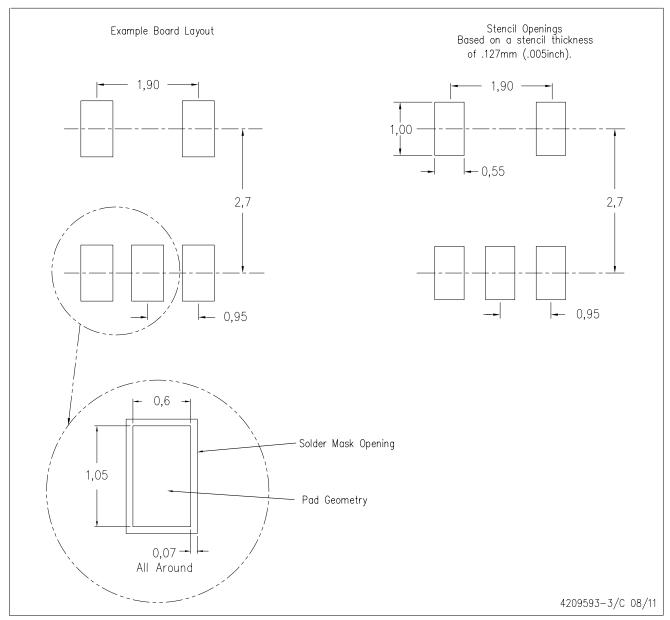
- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC 7525 for stencil design considerations.
- E. Customers should contact their board fabrication site for solder mask tolerances.



DBV (R-PDSO-G5)

# PLASTIC SMALL-OUTLINE PACKAGE




NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Body dimensions do not include mold flash or protrusion. Mold flash and protrusion shall not exceed 0.15 per side.
- D. Falls within JEDEC MO-178 Variation AA.



# DBV (R-PDSO-G5)

# PLASTIC SMALL OUTLINE



NOTES:

- A. All linear dimensions are in millimeters.
- B. This drawing is subject to change without notice.
- C. Customers should place a note on the circuit board fabrication drawing not to alter the center solder mask defined pad.
- D. Publication IPC-7351 is recommended for alternate designs.
- E. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Example stencil design based on a 50% volumetric metal load solder paste. Refer to IPC-7525 for other stencil recommendations.



### IMPORTANT NOTICE

Texas Instruments Incorporated (TI) reserves the right to make corrections, enhancements, improvements and other changes to its semiconductor products and services per JESD46, latest issue, and to discontinue any product or service per JESD48, latest issue. Buyers should obtain the latest relevant information before placing orders and should verify that such information is current and complete.

TI's published terms of sale for semiconductor products (http://www.ti.com/sc/docs/stdterms.htm) apply to the sale of packaged integrated circuit products that TI has qualified and released to market. Additional terms may apply to the use or sale of other types of TI products and services.

Reproduction of significant portions of TI information in TI data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. TI is not responsible or liable for such reproduced documentation. Information of third parties may be subject to additional restrictions. Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

Buyers and others who are developing systems that incorporate TI products (collectively, "Designers") understand and agree that Designers remain responsible for using their independent analysis, evaluation and judgment in designing their applications and that Designers have full and exclusive responsibility to assure the safety of Designers' applications and compliance of their applications (and of all TI products used in or for Designers' applications) with all applicable regulations, laws and other applicable requirements. Designer represents that, with respect to their applications, Designer has all the necessary expertise to create and implement safeguards that (1) anticipate dangerous consequences of failures, (2) monitor failures and their consequences, and (3) lessen the likelihood of failures that might cause harm and take appropriate actions. Designer agrees that prior to using or distributing any applications that include TI products, Designer will thoroughly test such applications and the functionality of such TI products as used in such applications.

TI's provision of technical, application or other design advice, quality characterization, reliability data or other services or information, including, but not limited to, reference designs and materials relating to evaluation modules, (collectively, "TI Resources") are intended to assist designers who are developing applications that incorporate TI products; by downloading, accessing or using TI Resources in any way, Designer (individually or, if Designer is acting on behalf of a company, Designer's company) agrees to use any particular TI Resource solely for this purpose and subject to the terms of this Notice.

TI's provision of TI Resources does not expand or otherwise alter TI's applicable published warranties or warranty disclaimers for TI products, and no additional obligations or liabilities arise from TI providing such TI Resources. TI reserves the right to make corrections, enhancements, improvements and other changes to its TI Resources. TI has not conducted any testing other than that specifically described in the published documentation for a particular TI Resource.

Designer is authorized to use, copy and modify any individual TI Resource only in connection with the development of applications that include the TI product(s) identified in such TI Resource. NO OTHER LICENSE, EXPRESS OR IMPLIED, BY ESTOPPEL OR OTHERWISE TO ANY OTHER TI INTELLECTUAL PROPERTY RIGHT, AND NO LICENSE TO ANY TECHNOLOGY OR INTELLECTUAL PROPERTY RIGHT OF TI OR ANY THIRD PARTY IS GRANTED HEREIN, including but not limited to any patent right, copyright, mask work right, or other intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information regarding or referencing third-party products or services does not constitute a license to use such products or services, or a warranty or endorsement thereof. Use of TI Resources may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

TI RESOURCES ARE PROVIDED "AS IS" AND WITH ALL FAULTS. TI DISCLAIMS ALL OTHER WARRANTIES OR REPRESENTATIONS, EXPRESS OR IMPLIED, REGARDING RESOURCES OR USE THEREOF, INCLUDING BUT NOT LIMITED TO ACCURACY OR COMPLETENESS, TITLE, ANY EPIDEMIC FAILURE WARRANTY AND ANY IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF ANY THIRD PARTY INTELLECTUAL PROPERTY RIGHTS. TI SHALL NOT BE LIABLE FOR AND SHALL NOT DEFEND OR INDEMNIFY DESIGNER AGAINST ANY CLAIM, INCLUDING BUT NOT LIMITED TO ANY INFRINGEMENT CLAIM THAT RELATES TO OR IS BASED ON ANY COMBINATION OF PRODUCTS EVEN IF DESCRIBED IN TI RESOURCES OR OTHERWISE. IN NO EVENT SHALL TI BE LIABLE FOR ANY ACTUAL, DIRECT, SPECIAL, COLLATERAL, INDIRECT, PUNITIVE, INCIDENTAL, CONSEQUENTIAL OR EXEMPLARY DAMAGES IN CONNECTION WITH OR ARISING OUT OF TI RESOURCES OR USE THEREOF, AND REGARDLESS OF WHETHER TI HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Unless TI has explicitly designated an individual product as meeting the requirements of a particular industry standard (e.g., ISO/TS 16949 and ISO 26262), TI is not responsible for any failure to meet such industry standard requirements.

Where TI specifically promotes products as facilitating functional safety or as compliant with industry functional safety standards, such products are intended to help enable customers to design and create their own applications that meet applicable functional safety standards and requirements. Using products in an application does not by itself establish any safety features in the application. Designers must ensure compliance with safety-related requirements and standards applicable to their applications. Designer may not use any TI products in life-critical medical equipment unless authorized officers of the parties have executed a special contract specifically governing such use. Life-critical medical equipment is medical equipment where failure of such equipment would cause serious bodily injury or death (e.g., life support, pacemakers, defibrillators, heart pumps, neurostimulators, and implantables). Such equipment includes, without limitation, all medical devices identified by the U.S. Food and Drug Administration as Class III devices and equivalent classifications outside the U.S.

TI may expressly designate certain products as completing a particular qualification (e.g., Q100, Military Grade, or Enhanced Product). Designers agree that it has the necessary expertise to select the product with the appropriate qualification designation for their applications and that proper product selection is at Designers' own risk. Designers are solely responsible for compliance with all legal and regulatory requirements in connection with such selection.

Designer will fully indemnify TI and its representatives against any damages, costs, losses, and/or liabilities arising out of Designer's non-compliance with the terms and provisions of this Notice.