ittelfuse Expertise Applied | Answers Delivered

Z0103MN, Z0107MN, Z0109MN

Description

Designed for use in solid state relays, MPU interface, TTL logic and other light industrial or consumer applications. Supplied in surface mount package for use in automated manufacturing.

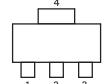
Features

- Sensitive Gate Trigger Current in Four Trigger Modes
- Blocking Voltage to 600 V
- Glass Passivated Surface for Reliability and Uniformity
- Surface Mount Package
- These are Pb-Free Devices

Functional Diagram

Additional Information

Ý



Po

Samples

Pin Out

Surface Mount – 600V > Z0103MN, Z0107MN, Z0109MN

Maximum Ratings ($T_{J} = 25^{\circ}C$ unless otherwise noted)

Rating	Symbol	Value	Unit
Peak Repetitive Off–State Voltage (Note 1) ($R_{_{GK}} = I_{_{K'}}T_{_J}$ – 40 to +125°C, Sine Wave, 50 to 60 Hz)	V _{drm} ,	600	V
On-State RMS Current (Full Sine Wave 50 to 60 Hz; $T_c = 80^{\circ}$ C)	I _{T (RMS)}	1.0	А
Peak Non-repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T _c = 25°C)	I _{T (RMS)}	8.0	A
Circuit Fusing Considerations (t = 8.3 ms)	l²t	0.4	A2s
Average Gate Power ($T_c = 80^{\circ}C, t \le 8.3 \text{ ms}$)	P _{G(AV)}	1.0	W
Peak Gate Current (t \leq 20 s, T _J = +125°C)	I _{GM}	1.0	A
Operating Junction Temperature Range @ Rated $V_{_{\rm RRM}}$ and $V_{_{\rm DRM}}$	TJ	-40 to +110	°C
Storage Temperature Range	T _{stg}	-40 to +150	°C

Thermal Characteristics			
Rating	Symbol	Value	Unit
Thermal Resistance, Junction-to-Ambient PCB Mounted per Figure 1	R _{8JA}	156	°C/W
Thermal Resistance, Junction–to–Tab Measured on MT2 Tab Adjacent to Epoxy	R _{BJT}	25	°C/W
Maximum Device Temperature for Soldering Purposes for 10 Secs Maximum	TL	260	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

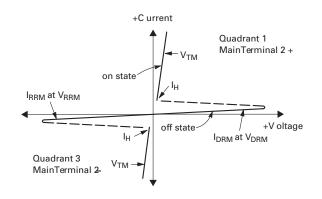
1. V_{DRM} and V_{RRM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Electrical Characteristics - **OFF** ($T_J = 25^{\circ}C$ unless otherwise noted)

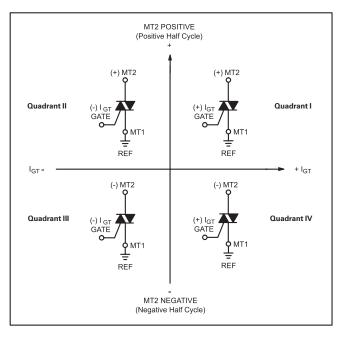
Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Forward or Reverse Blocking Current (Note 3) (V_{AK} = Rated V_{DRM} or V_{RRM} , R_{GK} = 1000 kQ	$T_J = 25^{\circ}C$	I _{DRM} ,	-	-	5.0	uA
$v_{AK} = hated v_{DRM} of v_{RRM}, h_{GK} = 1000 \text{ KG}$	T _J = 125°C	Drivi	-	-	500	μΑ

Electrical Characteristics · **ON** ($T_J = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic			Min	Тур	Max	Unit
Peak On–State Voltage (I $_{TM}$ = ±11 A Peak, Pulse Width \leq 2 ms, Duty Cycle \leq 2%)			_	_	1.8	V
Z0103MN	MT2(+), G(+)		0.15	-	3.0	
Gate Trigger Current	MT2(+), G(-)		0.15	-	3.0	
(Continuous dc) ($V_p = 12 V, R_1 = 30 Ohms$)	MT2(-), G(-)	- I _{GT}	0.15	-	3.0	- mA
$(v_{\rm D} = 12 v, n_{\rm L} = 30 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 $	MT2(-), G(+)		0.25	-	5.0	
Z0107MN	MT2(+), G(+)		0.15	-	5.0	
Gate Trigger Current	MT2(+), G(-)	- .	0.15	-	5.0	
(Continuous dc)	MT2(-), G(-)	- I _{gt}	0.15	-	5.0	· mA
$(V_{D} = 12 \text{ V}, \text{ R}_{L} = 30 \text{ Ohms})$	MT2(-), G(+)	-	0.25	-	7.0	
Z0109MN Gate Trigger Current (Continuous dc)	MT2(+), G(+)		0.15	-	10	
	MT2(+), G(-)	. I _{GT}	0.15	-	10	
	MT2(-), G(-)		0.15	-	10	- mA
(VD = 12 V, RL = 30 Ohms)	MT2(-), G(+)		0.25	_	10	
70100141	MT2(+), G(+)		-	-	7.0	
Z0103MN Latching Current	MT2(+), G(-)	-	_	_	15	
$(V_{D} = 12 V, _{IG} = 1.2 \times I_{GT})$	MT2(–), G(–)	- _L	_	_	7.0	- mA
ALL TYPES	MT2(-), G(+)	-	_	_	7.0	
7000101	MT2(+), G(+)		-	-	10	
Z0107MN Latching Current	MT2(+), G(-)	-	_	_	20	
$(V_{D} = 12 V, _{IG} = 1.2 \times I_{GT})$	MT2(-), G(-)	- I _L	_	_	10	mA
ALL TYPES	MT2(-), G(+)	-		_	10	
70100MN	MT2(+), G(+)		-	_	15	
Z0109MN Latching Current	MT2(+), G(-)		_	_	25	
$(V_D = 12 \text{ V}, _{IG} = 1.2 \text{ x } I_{GT})$	MT2(-), G(-)	- I _L	_	_	15	- mA
ALL TYPES	MT2(-), G(+)			_	15	

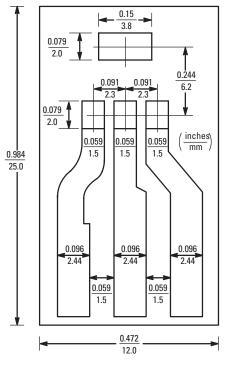

Electrical Characteristics - ON ($T_J = 25^{\circ}$ C unless otherwise noted; Electricals apply in both directions) Continued						
Gate Trigger Voltage (Continuous dc) (V _D = 12 Vdc, R _L = 30 Ohms)		V _{gt}	_	_	1.3	V
Gate–Controlled Turn–On Time, (V_{D} = Rated $V_{DRM'}$ I _{TM} = 16 A Peak, I _G = 30 mA)		t _{gt}	0.2	_	10	μs
Holding CurrentZ0103MA(V_p = 12 Vdc, Initiating Current = 50 mA, Gate Open)Z0107MA, Z0109MA			-	_	7.0	
		_H	_	_	10	mA

Dynamic Characteristics						
Characteristic		Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current ($V_{D} = 400 \text{ V}, I_{TM} = 0.84 \text{ A}$, Commutating dv/dt = 1.5 V/µs, Gate Open, $T_{J} = 110^{\circ}\text{C}, f = 250 \text{ Hz}$, with Snubber)		dv/dt	1.6	-	_	A/ms
	Z0103MN		10	30	-	
Critical Rate of Rise of On–State Current ($T_c = 110^{\circ}$ C, $I_g = 2 \times I_{gT}$, $R_{GK} = 1 \text{ k}\Omega$)	Z0107MN	di/dt	20	60	-	V/µs
	Z0109MN	-	50	75	-	
Repetitive Critical Rate of Rise of On–State Current, T _J = 125°C Pulse Width = 20 μ s, IPKmax = 15 A, diG/dt = 1 A/ μ s, f = 60 Hz			_	_	20	A/µs



Voltage Current Characteristic of SCR

Symbol	Parameter
V _{drm}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V _{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V _{TM}	Maximum On State Voltage
I _H	Holding Current



Quadrant Definitions for a Triac

All polarities are referenced to MT1. With in-phase signals (using standard AC lines) quadrants I and III are used.

Figure 1. PCB for Thermal Impedance and Power Testing of SOT-223

BOARD MOUNTED VERTICALLY IN CINCH 8840 EDGE CONNECTOR. BOARD THICKNESS = 65 MIL., FOIL THICKNESS = 2.5 MIL. MATERIAL: G10 FIBERGLASS BASE EPOXY

Thyristors Surface Mount – 600V > Z0103MN, Z0107MN, Z0109MN

(Solution of the second second

Figure 2. On-State Characteristics

Figure 4. Current Derating, Minimum Pad Size Reference: Ambient Temperature

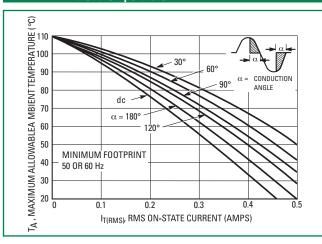
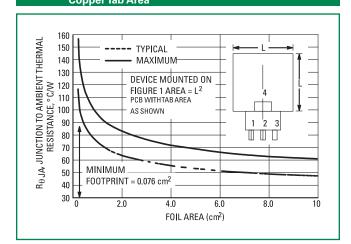



Figure 6. Current Derating, 2.0 cm Square Pad Reference: Ambient Temperature MAXIMUM ALLOWABLE AMBIENT TEMPERATURE (°C) 110 1 al 100 зU 60° CONDUCTION α= 90 ANGLE do 909 α = 180 80 120° 70 4.0 cm² FOIL AREA 60 50 0.1 0.2 0.3 0.4 0.5 0.7 0.8 0 0.6 Ą, I_{T(RMS)}, RMS ON-STATE CURRENT (AMPS)

Figure 3. Junction to Ambient Thermal Resistance vs Copper Tab Area

Figure 5. Current Derating, 1.0 cm Square Pad Reference: Ambient Temperature

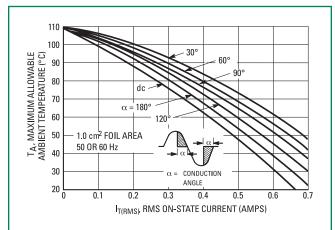
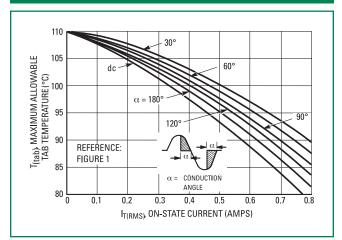
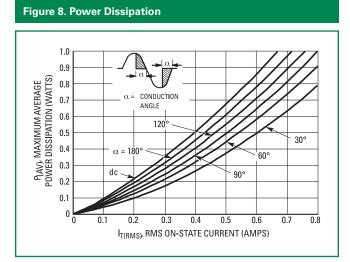
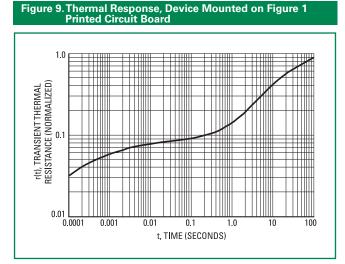



Figure 7. Current Derating Reference: MT2 Tab

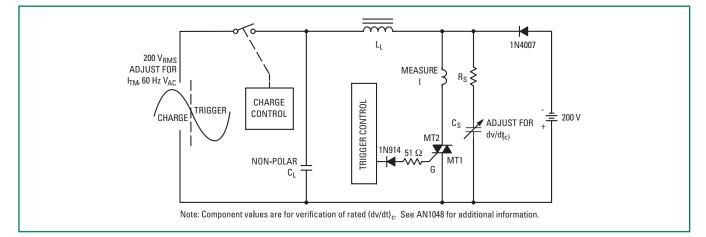
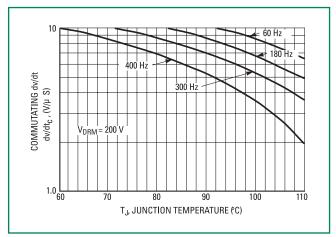



© 2017 Littelfuse, Inc. Specifications are subject to change without notice. Revised: 08/30/17

Thyristors

Surface Mount – 600V > Z0103MN, Z0107MN, Z0109MN

Figure 10. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Voltage (dv/dt)c

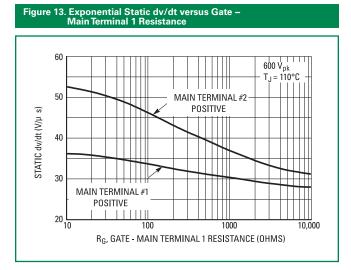
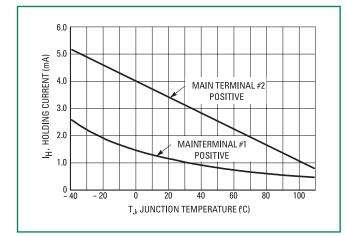
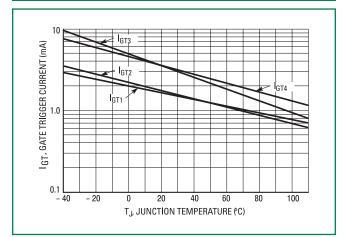

Figure 11. Typical Commutating dv/dt vs Current Crossing Rate and Junction Temperature 10 60 80 COMMUTATING dv/dt dv/dt_c , (V/µ S) 110° ТМ °00 ا t_w≁ 2 t_w f = 6f I<u>TM</u> V_{DRM} (di/dt)_c 1.0 ∟ 1.0 = 1000 10 di/dt, RATE OF CHANGE OF COMMUTATING CURRENT (A/mS)

Figure 12. Typical Commutating dv/dt vs Junction Temperature at 0.8 Amps RMS




Surface Mount – 600V > Z0103MN, Z0107MN, Z0109MN

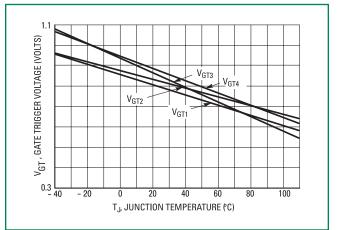
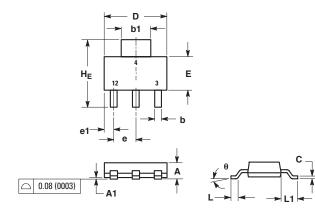

Figure 15. Typical Holding Current Variation

Figure 14. Typical Gate Trigger Current Variation

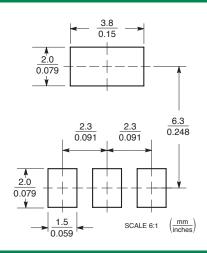
Figure 16. Gate Trigger Voltage Variation



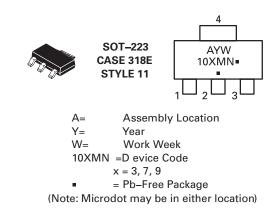
Thyristors

Surface Mount – 600V > Z0103MN, Z0107MN, Z0109MN

Dimensions


5.	Inches			1	Millimeters	s
Dim	Min	Nom	Max	Min	Nom	Max
А	1.50	1.63	1.75	0.060	0.064	0.068
A1	0.02	0.06	0.10	0.001	0.002	0.004
b	0.60	0.75	0.89	0.024	0.030	0.035
b1	2.90	3.06	3.20	0.115	0.121	0.126
С	0.24	0.29	0.35	0.009	0.012	0.014
D	6.30	6.50	6.70	0.249	0.256	0.263
E	3.30	3.50	3.70	0.130	0.138	0.145
е	2.20	2.30	2.40	0.087	0.091	0.094
e1	0.85	0.94	1.05	0.033	0.037	0.041
L	0.20			0.008		
L1	1.50	1.75	2.00	0.060	0.069	0.078
H _E	6.70	7.00	7.30	0.264	0.276	0.287
0		-			-	

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.


2. CONTROLLING DIMENSION: INCH.

Ordering Information						
Device	Package	Shipping				
Z0103MNT1G	SOT-223 (Pb-Free)					
Z0107MNT1G	SOT-223 (Pb-Free)	1000 / Tape & Reel				
Z0109MNT1G	SOT-223 (Pb-Free)					

Soldering Footprint

Part Marking System

Pin Assignment	
1	Main Terminal 1
2	Main Terminal 2
3	Gate
4	Main Terminal 2

Disclaimer Notice - Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littlefluse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at: www.littlfuse.com/disclaimer-electronics