Thank you for your interest in **onsemi** products.

Your technical document begins on the following pages.

Your Feedback is Important to Us!

Please take a moment to participate in our short survey. At **onsemi**, we are dedicated to delivering technical content that best meets your needs.

Help Us Improve - Take the Survey

This survey is intended to collect your feedback, capture any issues you may encounter, and to provide improvements you would like to suggest.

We look forward to your feedback.

To learn more about **onsemi**, please visit our website at <u>www.onsemi.com</u>

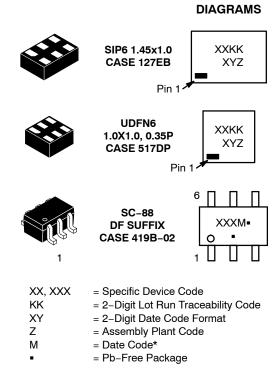
onsemi and ONSEMI. and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All opreating parameters, including "Typicals" must be validated for each customer application in the human body. Should Buyer purchase or use onsemi products for any such unintended or unauthorized application, Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and ereasnable attorney fees arising out of, directly or indirectly, any claim of personal injury or death Action Employer. This literature is subject to all applicatione claimed as not for resale in any manner. Other names and brands may be claimed as the property of others.

onsemi

MARKING

TinyLogic UHS Universal Configurable Two-Input Logic Gates

NC7SZ57, NC7SZ58


Description

The NC7SZ57 and NC7SZ58 are universal configurable two-input logic gates. Each device is capable of being configured for 1 of 5 unique two-input logic functions. Any possible two-input combinatorial logic function can be implemented, as shown in the *Function Selection Table*. Device functionality is selected by how the device is wired at the board level. *Figures 4 through 13* illustrate how to connect the NC7SZ57 and NC7SZ58, respectively, for the desired logic function. All inputs have been implemented with hysteresis.

The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a broad V_{CC} operating range. The device is specified to operate over the 1.65 V to 5.5 V V_{CC} operating range. The input and output are high impedance when V_{CC} is 0 V. Inputs tolerate voltages up to 5.5 V independent of V_{CC} operating range.

Features

- Ultra High-Speed
- Capable of Implementing any Two-Input Logic Functions
- Typical Usage Replaces Two (2) TinyLogic Gate Devices
- Reduces Part Counts in Inventory
- Broad V_{CC} Operating Range: 1.65 V to 5.5 V
- Power Down High Impednce Input / Output
- Over-Voltage Tolerant Inputs Facilitate 5 V to 3 V Translation
- Proprietary Noise / EMI Reduction Circuitry Implemented
- These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant

(Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location.

ORDERING INFORMATION

See detailed ordering, marking and shipping information in the package dimensions section on page 9 of this data sheet. NOTE: Some of the devices on this data sheet have been **DISCONTINUED**. Please refer to the table on page 9.

Pin Configurations

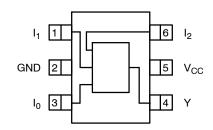
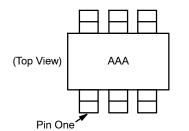
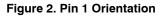




Figure 1. SC70 (Top View)

NOTES:

- AAA represents product code top mark (see <u>Ordering Information</u>).
 Orientation of top mark determines pin one location.
 Reading the top mark left to right, pin one is the lower left pin.

PIN DEFINITIONS

Pin # SC70	Pin # MicroPak	Name	Description
1	1	I ₁	Data Input
2	2	GND	Ground
3	3	I ₀	Data Input
4	4	Y	Output
5	5	V _{CC}	Supply Voltage
6	6	l ₂	Data Input

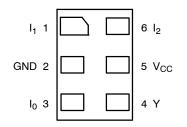


Figure 3. MicroPak[™] (Top Through View)

FUNCTION TABLE

Inputs		3	NC7SZ57	NC7SZ58				
l ₂	I ₁	I ₀	$Y = \overline{(I_0)} \cdot \overline{(I_2)} + (I_1) \cdot (I_2)$	$Y = (I_0) \cdot \overline{(I_2)} + \overline{(I_1)} \cdot (I_2)$				
L	L	L	Н	L				
L	L	Н	L	Н				
L	Н	L	Н	L				
L	Н	Н	L	Н				
Н	L	L	L	Н				
Н	L	Н	L	Н				
Н	Н	L	Н	L				
Н	Н	Н	Н	L				

H = HIGH Logic Level L = LOW Logic Level

FUNCTION SELECTION TABLE

2-Input Logic Function	Device Selection	Connection Configuration
2–Input AND	NC7SZ57	Figure 4
2-Input AND with Inverted Input	NC7SZ58	Figure 10, Figure 11
2-Input AND with Both Inputs Inverted	NC7SZ57	Figure 7
2–Input NAND	NC7SZ58	Figure 9
2-Input NAND with Inverted Input	NC7SZ57	Figure 5, Figure 6
2-Input NAND with Both Inputs Inverted	NC7SZ58	Figure 12
2–Input OR	NC7SZ58	Figure 12
2-Input OR with Inverted Input	NC7SZ57	Figure 5, Figure 6
2-Input OR with Both Inputs Inverted	NC7SZ58	Figure 9
2–Input NOR	NC7SZ57	Figure 7
2-Input NOR with Inverted Input	NC7SZ58	Figure 9, Figure 10
2-Input NOR with Both Inputs Inverted	NC7SZ57	Figure 4
2–Input XOR	NC7SZ58	Figure 13
2–Input XNOR	NC7SZ57	Figure 8

NC7SZ57 Logic Configurations

Figure 4 through Figure 8 show the logical functions that can be implemented using the NC7SZ57. The diagrams show the DeMorgan's equivalent logic duals for a given

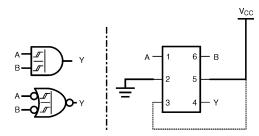


Figure 4. 2-Input AND Gate

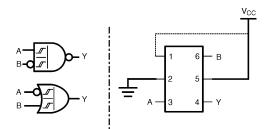


Figure 6. 2–Input NAND with Inverted B Input

two-input function. The logical implementation is next to the board-level physical implementation of how the pins of the function should be connected.

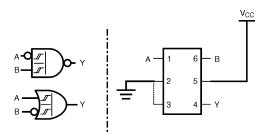


Figure 5. 2-Input NAND with Inverted A Input

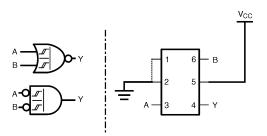


Figure 7. 2-Input NOR Gate

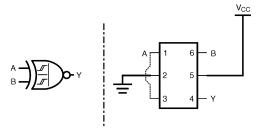


Figure 8. 2–Input XNOR Gate

NC7SZ58 Logic Configurations

Figure 9 through Figure 13 show the logical functions that can be implemented using the NC7SZ58. The diagrams show the DeMorgan's equivalent logic duals for a given

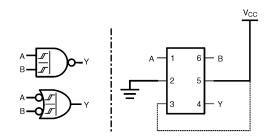


Figure 9. 2-Input NAND Gate

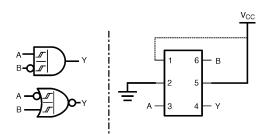


Figure 11. 2-Input AND with Inverted B Input

two-input function. The logical implementation is next to the board-level physical implementation of how the pins of the function should be connected.

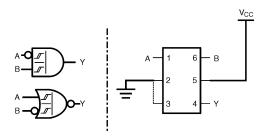


Figure 10. 2-Input AND with Inverted A Input



Figure 12. 2-Input OR Gate

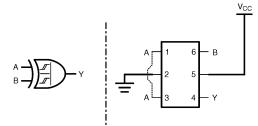


Figure 13. 2-Input XOR Gate

ABSOLUTE MAXIMUM RATINGS

Symbol	Param	Min	Max	Unit	
V _{CC}	Supply Voltage		-0.5	6.5	V
V _{IN}	DC Input Voltage		-0.5	6.5	V
V _{OUT}	DC Output Voltage		-0.5	6.5	V
I _{IK}	DC Input Diode Current	V _{IN} < 0 V	-	-50	mA
Ι _{ΟΚ}	DC Output Diode Current	V _{OUT} < 0 V	-	-50	mA
I _{OUT}	DC Output Source / Sink Current		-	±50	mA
$I_{CC} \text{ or } I_{GND}$	DC V _{CC} or Ground Current		-	±50	mA
T _{STG}	Storage Temperature Range		-65	+150	°C
TJ	Maximum Junction Temperature	under Bias	-	+150	°C
ΤL	Lead Temperature, Soldering, 10	Seconds	-	+260	°C
PD	Power Dissipation in Still Air	SC70-6	-	332	mW
		MicroPak-6	-	812	
		MicroPak2 [™] -6	-	812	
ESD	Human Body Model, JEDEC: JES	SD22-A114	-	4000	V
	Charge Device Model, JEDEC: JE	ESD22-C101	-	2000	

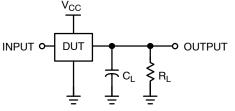
Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

RECOMMENDED OPERATING CONDITIONS

Symbol	Parameter	Conditions	Min	Мах	Unit
V _{CC}	Supply Voltage Operating		1.65	5.5	V
	Supply Voltage Data Retention		1.5	5.5	
V _{IN}	Input Voltage		0	5.5	V
V _{OUT}	Output Voltage		0	V _{CC}	V
T _A	Operating Temperature		-40	+85	°C
θ_{JA}	Thermal Resistance	SC70-6	-	377	°C/W
		MicroPak-6	-	154	
		MicroPak2-6	-	154	

Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

DC ELECTICAL CHARACTERISTICS

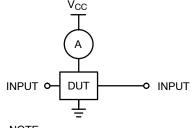

					Т	A = +25°	C	T _A = -40	to +85°C		
Symbol	Parameter	V _{CC} (V)	Cor	ditions	Min	Тур	Max	Min	Max	Unit	
VP	Positive Threshold	1.65			_	0.99	1.40	-	1.40	V	
	Voltage	2.30			-	1.39	1.80	-	1.80		
		3.00			-	1.77	2.20	-	2.20		
		4.50			-	2.49	3.10	-	3.10		
		5.50			-	2.95	3.60	-	3.60		
V _N	Negative Threshold	1.65			0.20	0.50	_	0.20	-	V	
	Voltage	2.30			0.40	0.75	_	0.40	-		
		3.00			0.60	0.99	_	0.60	-		
		4.50			1.00	1.43	_	1.00	-		
		5.50			1.20	1.70	-	1.20	-		
V _H	Hysteresis Voltage	1.65			0.15	0.48	0.90	0.15	0.90	V	
		2.30			0.25	0.64	1.10	0.25	1.10		
		3.00			0.40	0.78	1.20	0.40	1.20		
	4.50			0.60	1.06	1.50	0.60	1.50			
		5.50			0.70	1.25	1.70	0.70	1.70		
V _{OH}	HIGH Level Output	evel Output 1.65 V _{IN} = V _{IH}		or V _{IL}	1.55	1.65	_	1.55	-	V	
Voltage	2.30	I _{OH} = −100 μA		2.20	2.30	_	2.20	-			
	3.00			2.90	3.00	_	2.90	-			
		4.50			4.40	4.50	_	4.40	-		
		1.65	$V_{IN} = V_{IH}$	I _{OH} = -4 mA	1.29	1.52	_	1.29	-		
		2.30	or V _{IL}	I _{OH} = -8 mA	1.90	2.15	_	1.90	-		
		3.00		I _{OH} = -16 mA	2.40	2.80	-	2.40	-		
		3.00	1		I _{OH} = -24 mA	2.30	2.68	_	2.30	-	
		4.50		I _{OH} = -32 mA	3.80	4.20	-	3.80	-		
V _{OL}	LOW Level Output	1.65	$V_{IN} = V_{IH} c$	or V _{IL}	-	-	0.10	-	0.10	V	
	Voltage	2.30	l _{OL} = 100 μ	ιA	-	-	0.10	-	0.10		
		3.00			-	-	0.10	-	0.10		
		4.50			-	-	0.10	-	0.10		
		1.65	V _{IN} = V _{IH} or V _{IL}	I _{OL} = 4 mA	-	0.08	0.24	-	0.24		
		2.30	or V _{IL}	I _{OL} = 8 mA	-	0.10	0.30	-	0.30		
		3.00		I _{OL} = 16 mA	-	0.15	0.40	-	0.40		
		3.00	-	I _{OL} = 24 mA	-	0.22	0.55	-	0.55	1	
		4.50		I _{OL} = 32 mA	-	0.22	0.55	-	0.55	1	
I _{IN}	Input Leakage Current	1.65 to 5.50	V _{IN} = 5.5 \	/, GND	-	-	±0.1	-	±1.0	μA	
I _{OFF}	Power Off Leakage Current	0	V _{IN} or V _{OL}	_{IT} = 5.5 V	_	-	1	-	10	μA	
I _{CC}	Quiescent Supply Current	1.65 to 5.5	V _{IN} = 5.5 \	/, GND	_	-	1	-	10	μA	

AC ELECTRICAL CHARACTERISTICS

				T _A = +25°C		T _A = -40	to +85°C		
Symbol	Parameter	V _{CC} (V)	Conditions	Min	Тур	Max	Min	Max	Unit
t _{PLH} , t _{PHL}	Propagation Delay In to Y	1.8 ±0.15	C _L = 15 pF,	-	8.0	14.0	-	14.5	ns
	(Figure 14, 16)	2.5 ±0.2	$R_L = 1 M\Omega$	-	4.9	8.0	-	8.5	
		3.3 ±0.3		-	3.7	5.3	-	5.7	
		5.0 ±0.5		-	2.8	4.3	-	4.6	
		3.3 ±0.3	$C_{L} = 50 \text{ pF},$	-	4.2	6.0	-	6.5	ns
		5.0 ±0.5	R _L = 500 Ω	-	3.4	4.9	-	5.3	
C _{IN}	Input Capacitance	0		-	2	-	-	-	pF
C _{PD}	Power Dissipation Capacitance	3.3	(Note 4)	-	14	-	-	-	pF
	(Figure 15)	5.0	1	-	17	-	-	-	

4. C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. *(See Figure 12)* C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC} static).

AC Loading and Waveforms



NOTE:

5. C_L includes load and stray capacitance.

6. Input PRR = 1.0 MHz, t_W = 500 ns.

NOTE: 7. Input = AC Waveforms. 8. PRR = Variable; Duty Cycle = 50%.

Figure 15. I_{CCD} Test Circuit

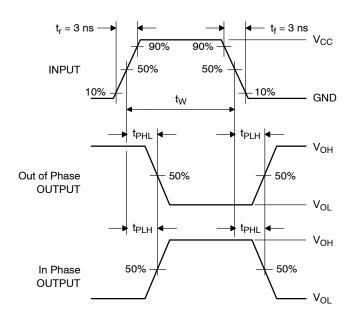


Figure 16. AC Waveforms

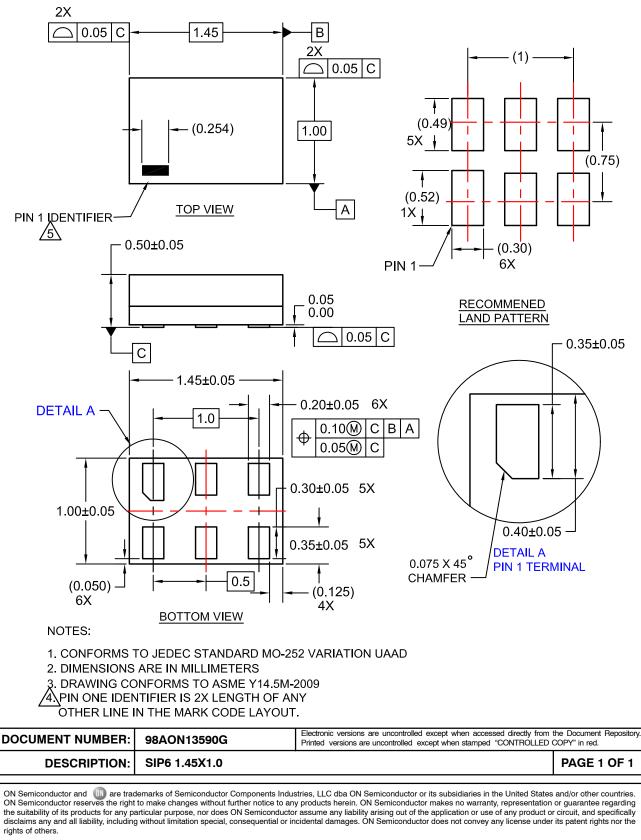
ORDERING INFORMATION

Device	Top Mark	Package	Shipping [†]
NC7SZ57P6X	Z57	6-Lead SC70, EIAJ SC-88, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ57L6X	КК	6-Lead Micropak, 1.0 mm Wide	5000 / Tape & Reel
NC7SZ57FHX	КК	6-Lead, MicroPak2, 1x1 mm Body, .35 mm Pitch	5000 / Tape & Reel
NC7SZ58P6X	Z58	6-Lead SC70, EIAJ SC-88, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ58L6X	LL	6-Lead Micropak, 1.0 mm Wide	5000 / Tape & Reel
NC7SZ58FHX	LL	6-Lead, MicroPak2 , 1x1 mm Body, .35 mm Pitch	5000 / Tape & Reel

DISCONTINUED (Note 9)

NC7SZ57P6X-L22347	Z57	6-Lead SC70, EIAJ SC-88, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ57L6X-L22175	КК	6-Lead Micropak, 1.0 mm Wide	5000 / Tape & Reel
NC7SZ57FHX-L22175	КК	6-Lead, MicroPak2, 1x1 mm Body, .35 mm Pitch	5000 / Tape & Reel
NC7SZ58P6X-L22347	Z58	6-Lead SC70, EIAJ SC-88, 1.25 mm Wide	3000 / Tape & Reel
NC7SZ58L6X-L22175	LL	6-Lead Micropak, 1.0 mm Wide	5000 / Tape & Reel
NC7SZ58FHX-L22175	LL	6-Lead, MicroPak2 , 1x1 mm Body, .35 mm Pitch	5000 / Tape & Reel

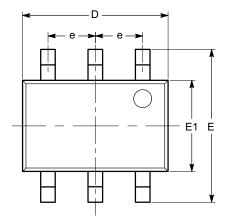
+For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. 9. **DISCONTINUED:** These devices are not recommended for new design. Please contact your **onsemi** representative for information. The


most current information on these devices may be available on www.onsemi.com.

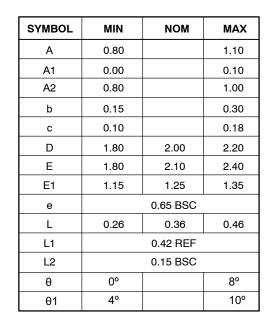
MicroPak is a trademark of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries.

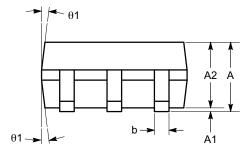
SIP6 1.45X1.0 CASE 127EB ISSUE O

DATE 31 AUG 2016

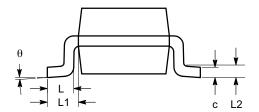


onsemi




SC-88 (SC-70 6 Lead), 1.25x2 CASE 419AD ISSUE A

DATE 07 JUL 2010

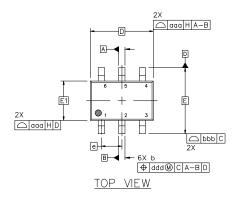


SIDE VIEW

Notes:

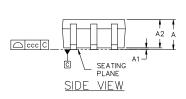
(1) All dimensions are in millimeters. Angles in degrees.

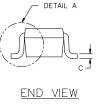
(2) Complies with JEDEC MO-203.

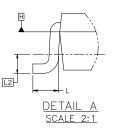

END VIEW

DOCUMENT NUMBER:	98AON34266E	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SC-88 (SC-70 6 LEAD), 1.25X2 PAGE 1 O					
the right to make changes without furth purpose, nor does onsemi assume an	er notice to any products herein. onsemi making liability arising out of the application or use	LLC dba onsemi or its subsidiaries in the United States and/or other cour es no warranty, representation or guarantee regarding the suitability of its pr of any product or circuit, and specifically disclaims any and all liability, inc e under its patent rights nor the rights of others.	oducts for any particular			

semi


SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 **ISSUE Z**


DATE 18 APR 2024



- DIMENSIONING AND TOLERANCING CONFORM TO ASME 1. Y14.5-2018.
- 2.
- ALL DIMENSION ARE IN MILLIMETERS. DIMENSIONS D AND E1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 3. PER END.
- 4. DIMENSIONS D AND E1 AT THE OUTERMOST EXTREMES OF
- DATUMS A AND B ARE DETERMINED AT DATUM H. 5.
- DIMENSIONS & AND C APPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. 6.
- DIMENSION & DOES NOT INCLUDE DAMBAR PROTRUSION. 7 ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION & AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER RADIUS OF THE FOOT.

	MILLIMETERS					
DIM	MIN.	NOM.	MAX.			
А			1.10			
A1	0.00		0.10			
A2	0.70	0.90	1.00			
b	0.15	0.20	0.25			
с	0.08	0.22				
D	2.00 BSC					
E		2.10 BSC				
E1		1.25 BSC				
е		0.65 BSC)			
L	0.26	0.36	0.46			
L2	0.15 BSC					
aaa	0.15					
bbb	0.30					
ccc		0.10				
ddd		0.10				

6X 0.66 6X 0.30-2.50 0.65 PITCH

RECOMMENDED MOUNTING FOOTPRINT*

FOR ADDITIONAL INFORMATION ON OUR Pb-FREE STRATEGY AND SOLDERING DETAILS, PLEASE DOWNLOAD THE ONSEMI SOLDERING AND MOUNTING TECHNIQUES REFERENCE MANUAL, SOLDERRM/D.

XXX = Specific Device Code Μ

GENERIC **MARKING DIAGRAM***

XXXM.

. 0

6

- = Date Code*
- = Pb-Free Package

(Note: Microdot may be in either location)

*Date Code orientation and/or position may vary depending upon manufacturing location.

*This information is generic. Please refer to device data sheet for actual part marking. Pb-Free indicator, "G" or microdot "•", may or may not be present. Some products may not follow the Generic Marking.

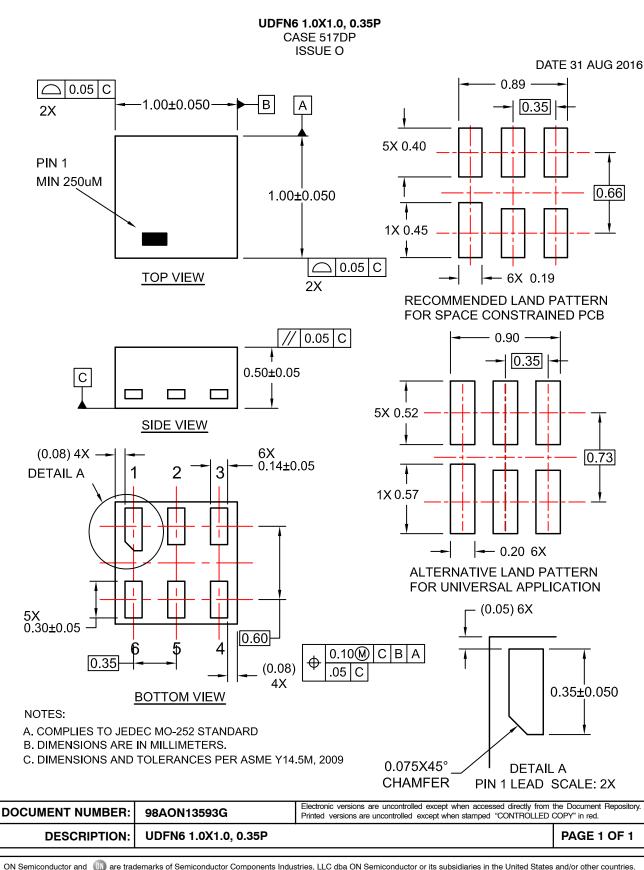
STYLES ON PAGE 2

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.				
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65	5P	PAGE 1 OF 2			
onsemi and ONSEMI. are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation						

special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

SC-88 2.00x1.25x0.90, 0.65P CASE 419B-02 ISSUE Z

DATE 18 APR 2024


STYLE 1: PIN 1. EMITTER 2 2. BASE 2 3. COLLECTOR 1 4. EMITTER 1 5. BASE 1 6. COLLECTOR 2	STYLE 2: CANCELLED	STYLE 3: CANCELLED	STYLE 4: PIN 1. CATHODE 2. CATHODE 3. COLLECTOR 4. EMITTER 5. BASE 6. ANODE	STYLE 5: PIN 1. ANODE 2. ANODE 3. COLLECTOR 4. EMITTER 5. BASE 6. CATHODE	STYLE 6: PIN 1. ANODE 2 2. N/C 3. CATHODE 1 4. ANODE 1 5. N/C 6. CATHODE 2
STYLE 7: PIN 1. SOURCE 2 2. DRAIN 2 3. GATE 1 4. SOURCE 1 5. DRAIN 1 6. GATE 2	STYLE 8: CANCELLED	STYLE 9: PIN 1. EMITTER 2 2. EMITTER 1 3. COLLECTOR 1 4. BASE 1 5. BASE 2 6. COLLECTOR 2	STYLE 10: PIN 1. SOURCE 2 2. SOURCE 1 3. GATE 1 4. DRAIN 1 5. DRAIN 2 6. GATE 2	STYLE 11: PIN 1. CATHODE 2 2. CATHODE 2 3. ANODE 1 4. CATHODE 1 5. CATHODE 1 6. ANODE 2	STYLE 12: PIN 1. ANODE 2 2. ANODE 2 3. CATHODE 1 4. ANODE 1 5. ANODE 1 6. CATHODE 2
STYLE 13:	STYLE 14:	STYLE 15:	STYLE 16:	STYLE 17:	STYLE 18:
PIN 1. ANODE	PIN 1. VREF	PIN 1. ANODE 1	PIN 1. BASE 1	PIN 1. BASE 1	PIN 1. VIN1
2. N/C	2. GND	2. ANODE 2	2. EMITTER 2	2. EMITTER 1	2. VCC
3. COLLECTOR	3. GND	3. ANODE 3	3. COLLECTOR 2	3. COLLECTOR 2	3. VOUT2
4. EMITTER	4. IOUT	4. CATHODE 3	4. BASE 2	4. BASE 2	4. VIN2
5. BASE	5. VEN	5. CATHODE 2	5. EMITTER 1	5. EMITTER 2	5. GND
6. CATHODE	6. VCC	6. CATHODE 1	6. COLLECTOR 1	6. COLLECTOR 1	6. VOUT1
STYLE 19:	STYLE 20:	STYLE 21:	STYLE 22:	STYLE 23:	STYLE 24:
PIN 1. I OUT	PIN 1. COLLECTOR	PIN 1. ANODE 1	PIN 1. D1 (i)	PIN 1. Vn	PIN 1. CATHODE
2. GND	2. COLLECTOR	2. N/C	2. GND	2. CH1	2. ANODE
3. GND	3. BASE	3. ANODE 2	3. D2 (i)	3. Vp	3. CATHODE
4. V CC	4. EMITTER	4. CATHODE 2	4. D2 (c)	4. N/C	4. CATHODE
5. V EN	5. COLLECTOR	5. N/C	5. VBUS	5. CH2	5. CATHODE
6. V REF	6. COLLECTOR	6. CATHODE 1	6. D1 (c)	6. N/C	6. CATHODE
STYLE 25:	STYLE 26:	STYLE 27:	STYLE 28:	STYLE 29:	STYLE 30:
PIN 1. BASE 1	PIN 1. SOURCE 1	PIN 1. BASE 2	PIN 1. DRAIN	PIN 1. ANODE	PIN 1. SOURCE 1
2. CATHODE	2. GATE 1	2. BASE 1	2. DRAIN	2. ANODE	2. DRAIN 2
3. COLLECTOR 2	3. DRAIN 2	3. COLLECTOR 1	3. GATE	3. COLLECTOR	3. DRAIN 2
4. BASE 2	4. SOURCE 2	4. EMITTER 1	4. SOURCE	4. EMITTER	4. SOURCE 2
5. EMITTER	5. GATE 2	5. EMITTER 2	5. DRAIN	5. BASE/ANODE	5. GATE 1
6. COLLECTOR 1	6. DRAIN 1	6. COLLECTOR 2	6. DRAIN	6. CATHODE	6. DRAIN 1

Note: Please refer to datasheet for style callout. If style type is not called out in the datasheet refer to the device datasheet pinout or pin assignment.

DOCUMENT NUMBER:	98ASB42985B	Electronic versions are uncontrolled except when accessed directly from the Document Repository. Printed versions are uncontrolled except when stamped "CONTROLLED COPY" in red.					
DESCRIPTION:	SC-88 2.00x1.25x0.90, 0.65P		PAGE 2 OF 2				

onsemi and ONSEMI are trademarks of Semiconductor Components Industries, LLC dba onsemi or its subsidiaries in the United States and/or other countries. onsemi reserves the right to make changes without further notice to any products herein. onsemi makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. onsemi does not convey any license under its patent rights nor the rights of others.

ON Semiconductor and unarks of Semiconductor Components Industries, LLC dba ON Semiconductor or its subsidiaries in the United States and/or other countries. ON Semiconductor reserves the right to make changes without further notice to any products herein. ON Semiconductor makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does ON Semiconductor assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. ON Semiconductor does not convey any license under its patent rights or the rights of others.

onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at <u>www.onsemi.com/site/pdf/Patent_Marking.pdf</u>. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does onsemi assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or indental damages. Buyer is responsible for its products and applications using onsemi products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by onsemi. "Typical" parameters which may be provided in onsemi data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. onsemi does not convey any license under any of its intellectual property rights nor the rights of others. onsemi products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification. Buyer shall indemnify and hold onsemi and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs,

ADDITIONAL INFORMATION

TECHNICAL PUBLICATIONS:

Technical Library: www.onsemi.com/design/resources/technical-documentation onsemi Website: www.onsemi.com

ONLINE SUPPORT: <u>www.onsemi.com/support</u> For additional information, please contact your local Sales Representative at <u>www.onsemi.com/support/sales</u>