

SSC8039GN6

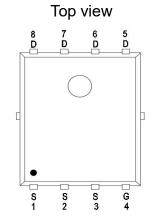
P-Channel Enhanced MOSFET

Features

VDS	VGS	RDSON Typ.	ID
201/	/ ±20V	7mR@-10V	644
-30V		8.5mR@-4V5	-64A

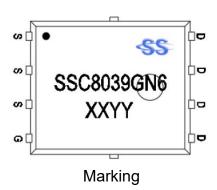
Description

This device is P-Channel enhancement MOSFET. Uses advanced trench technology and design to provide excellent RDSON with low gate charge. This device is suitable for use in DC-DC conversion, power switch and charging circuit. 100% UIS + DVDS Tested.


Applications

- DC/DC conversion
- Power management in portable
- Load/Power Switching for portable device

Ordering Information


Device	Package	Shipping	
SSC8039GN6	PDFN5X6	5000/Reel	

Pin configuration

PDFN5X6

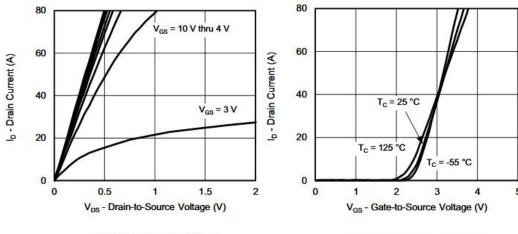
www.afsemi.com Rev.2.1

➤ **Absolute Maximum Ratings**(T_A=25°C unless otherwise noted)

Symbol	Parameter		Ratings	Unit	
V _{DSS}	Drain-to-Source Voltage		30	V	
V _{GSS}	Gate-to-Source Vol	Gate-to-Source Voltage		V	
	Continuous Drain Current	T _C =25°C	-64	Δ.	
I _D		T _C =100°C	-34	A	
	Continuous Dunie Comment &	T _A =25°C	-18.5	Δ.	
I _{DSM}	Continuous Drain Current ^a	T _A =70°C	-13	A	
I _{DM}	Pulsed Drain Curre	Pulsed Drain Current b		Α	
	Power Dissipation ^c	T _C =25°C	29	10/	
P _D		T _C =100°C	11.6	W	
В	Power Dissipation ^a	T _A =25°C	2.4	10/	
P _{DSM}		T _A =70°C	1.5	W	
I _{AS}	Avalanche Current b L=0.5ml	H Single Pulse	-22.5	Α	
E _{AS}	Avalanche Energy ^b L=0.5m	H Single Pulse	126	mJ	
TJ	Operation junction temperature		-55~150	°C	
T _{STG}	Storage temperature	Storage temperature range -5			
R _{0JA}	Junction-to-Ambient Therma	52	°C // A/		
R _{eJC}	Junction-to-Case Thermal	4.3	°C/W		

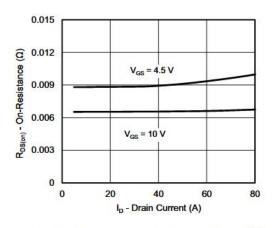
Note:

- a. The value of $R_{\theta JA}$ is measured with the device mounted on 1 in FR-4 board with 2oz.copper,in a still air environment with T_A =25°C. The value in any given application depends on the user is specific board design. The current rating is based on the t 10s thermal resistance rating.
- b. Repetitive rating, pulse width limited by junction temperature.
- c. The power dissipation P_D is based on $T_{J(MAX)}$ =150°C, using junction-to-case thermal resistance, and is more useful in setting the upper dissipation limit for cases where additional heat sinking is used.

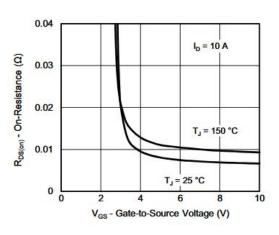


➤ Electronics Characteristics(T_A=25°C unless otherwise noted)

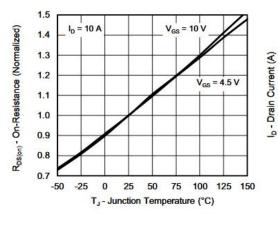
Symbol	Parameter	Test Conditions	Min	Тур.	Max	Unit	
V _{(BR)DSS}	Drain-Source Breakdown Voltage	VGS=0V , ID=-250uA	-30			V	
V _{GS (th)}	Gate Threshold Voltage	VDS=VGS , ID=-250uA	-1	-1.2	-1.8	V	
Б	Drain-Source	VGS=-10V , ID=-20A		7	8.5	D	
R _{DS(on)}	On-Resistance	VGS=-4.5V , ID=-12A		8.5	10	mR	
I _{DSS}	Zero Gate Voltage Drain Current	VDS=-24V , VGS=0V			-1	uA	
I _{GSS}	Gate-Source leak	VGS=±20V , VDS=0V			±100	nA	
G _{FS}	Transconductance	VDS=-10V , ID=-5A		38		S	
V _{SD}	Forward Voltage	VGS=0V , IS=-2A		-0.7	-1.3	V	
Ciss	Input Capacitance			4900			
Coss	Output Capacitance	VDS=-15V , VGS=0V,		440		pF	
Crss	Reverse Transfer Capacitance	f=1MHz		330			
T _{D(ON)}	Turn-on delay time			44			
Tr	Rise time	VGS=-10V, RL=15R		31			
T _{D(OFF)}	Turn-off delay time	VDS=-15V , RG=6R, ID=-2A		188		ns	
Tf	Fall time			111			
Q _G	Total Gate Charge			66			
Q _{GS}	Gate to Source Charge	VGS=-10V, VDS=-15V ID=-20A		9		nC	
Q_GD	Gate to Drain Charge			15			

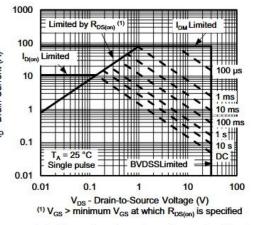


➤ Typical Characteristics(T_A=25°C unless otherwise noted)

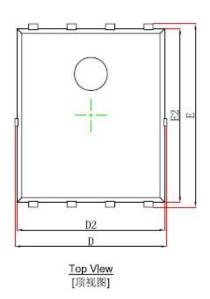


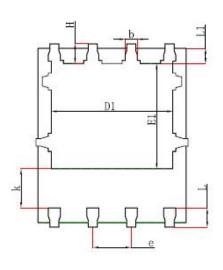
Output Characteristics



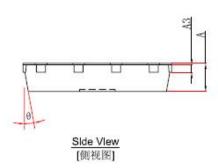

On-Resistance vs. Drain Current and Gate Voltage

On-Resistance vs. Gate-to-Source Voltage


On-Resistance vs. Junction Temperature



Safe Operating Area, Junction-to-Ambient



Package Information

Bottom Vlew [背视图]

Package: DNF5X6-8L

Symbol	Dimensions In Millimeters		Dimensions In Inches		
	Min.	Max.	Min.	Max.	
Α	0.900	1.000	0.035	0.039	
A3	0.254REF		0.010REF		
D	4.944	5.096	0.195	0.201	
E	5.974	6.126	0.235	0.241	
D1	3.910	4.110	0.154	0.162	
E1	3.375	3.575	0.133	0.141	
D2	4.824	4.976	0.190	0.196	
E2	5.674	5.826	0.223	0.229	
k	1.190	1.390	0.047	0.055	
b	0.350	0.450	0.014	0.018	
е	1.270TYP		0.050TYP		
L	0.559	0.711	0.022	0.028	
L1	0.424	0.576	0.017	0.023	
Н	0.574	0.726	0.023	0.029	
θ	10°	12°	10°	12°	

DISCLAIMER

AFSEMI RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. AFSEMI DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICIENCE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

THE GRAPHS PROVIDED IN THIS DOCUMENT ARE STATISTICAL SUMMARIES BASED ON A LIMITED NUMBER OF SAMPLES AND ARE PROVIDED FOR INFORMATIONAL PURPOSE ONLY. THE PERFORMANCE CHARACTERISTICS LISTED IN THEM ARE NOT TESTED OR GUARANTEED. IN SOME GRAPHS, THE DATA PRESENTED MAY BE OUTSIDE THE SPECIFIED OPERATING RANGE (E.G. OUTSIDE SPECIFIED POWER SUPPLY RANGE) AND THEREFORE OUTSIDE THE WARRANTED RANGE.