
HARTING Coaxial and Metric Connectors

Transforming customer wishes into concrete solutions

The HARTING Technology Group is skilled in the fields of electrical, electronic and optical connection, transmission and networking technology, as well as in manufacturing, mechatronics and software creation. The Group uses these skills to develop customized solutions and products such as connectors for energy and data-transmission/data-networking applications, including, for example, mechanical engineering, rail technology, wind energy plants, factory automation and the telecommunications sector. In addition, HARTING also produces electro-magnetic components for the automobile industry and offers solutions in the field of housing technology and shop systems.

The HARTING Group currently comprises 37 subsidiary companies and worldwide distributors employing a total of more than 3,800 staff.

🕈 HARTING Representation

We aspire to top performance.

Connectors ensure functionality. As core elements of electrical and optical termination, connection and infrastructure technologies, they are essential in enabling the modular construction of devices, machines and systems across an extremely wide range of industrial applications. Their reliability is a crucial factor guaranteeing smooth functioning in the manufacturing area, telecommunications, applications in medical technology – in short, connectors are at work in virtually every conceivable application area. Thanks to the ongoing development of our technologies, our customers enjoy investment security and benefit from durable, long-term functionality.

Wherever our customers are, we're there.

Increasing industrialization is creating growing markets that are characterized by widely diverging demands and requirements. What these markets all share in common is the quest for perfection, increasingly efficient processes and reliable technologies. **HARTING** is providing these technologies – in Europe, the Americas and Asia. In order to implement customer requirements in the best possible manner, the **HARTING** professionals at our international subsidiaries engage in up-close, partnership-based interaction with our customers, right from the very early product development phase. Our on-site staff form the interface to the centrally coordinated development and production departments. In this way, our customers can rely on consistently high, superior product quality – worldwide.

Our claim: Pushing Performance.

HARTING provides more than optimally attuned components. In order to offer our customers the best possible solutions, on request **HARTING** contributes a great deal more and is tightly integrated into the value-creation process.

From ready-assembled cables through to control racks or readyto-go control desks. Our aim is to generate maximum benefit for our customers – with no compromises!

Quality creates reliability - and warrants trust.

The **HARTING** brand stands for superior quality and reliability – worldwide. The standards we set are the result of consistent, stringent quality management that is subject to regular certifications and audits.

EN ISO 9001, the EU Eco-Audit and ISO 14001:2004 are key elements here. We take a proactive stance towards new requirements, which is why **HARTING** is the first company worldwide to have obtained the new IRIS quality certificate for rail vehicles.

HARTING technology creates added value for customers. Technologies by HARTING are at work worldwide. HARTING's presence stands for smoothly functioning systems powered by intelligent connectors, smart infrastructure solutions and sophisticated network systems. Over the course of many years of close, trust-based cooperation with its customers, the HARTING Technology Group has become one of the leading specialists globally for connector technology. We offer individual customers specific and innovative solutions that go beyond the basic standard functionalities. These tailored solutions deliver sustained results, ensure investment security and enable customers to achieve significant added value.

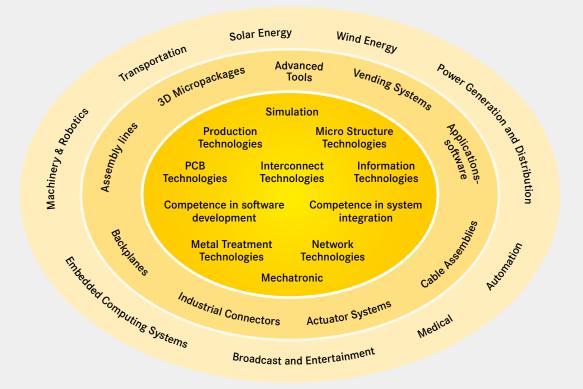
Opting for HARTING opens up an innovative, complex world of concepts and ideas.

In order to develop and produce connectivity and network solutions serving an exceptionally wide range of connector applications in a professional and cost-effective manner, **HARTING** not only commands the full array of conventional tools and basic technologies. Above and beyond these capabilities, **HARTING** is constantly harnessing and refining its broad base of knowledge and experience to create new solutions that also ensure continuity. To secure its lead in know-how, HARTING draws on a wealth of sources from its in-house research and applications.

Salient examples of these sources of innovative knowledge include microstructure technologies, 3D design and connection technol-

ogy, high-temperature and ultrahigh-frequency applications that are finding use in telecommunications and automation networks, in the automotive industry, or in industrial sensor and actuator applications, RFID and wireless technologies, in addition to packaging and housing made of plastics, aluminum and stainless steel.

HARTING overcomes technological limitations.


Drawing on the comprehensive resources of the group's technology pool, **HARTING** devises practical solutions for its customers. Whether this involves industrial networks for manufacturing automation, or hybrid interface solutions for wireless telecommunication infrastructures, 3D circuit carriers with microstructures, or cable assemblies for high-temperature applications in the automotive industry – **HARTING** technologies offer not only components, but comprehensive solutions attuned to individual customer requirements and preferences. The range of cost-effective solutions covers ready-to-use cable configurations, completely assembled backplanes and board system carriers, as well as fully wired and tested control panels.

In order to ensure the future-proof design of RF and EMC-compatible interface solutions, the central **HARTING** laboratory (certified to EN 45001) employs simulation tools, as well as experimental, testing and diagnostics facilities all the way to scanning electron microscopes. In addition to product and process suitability considerations, lifecycle and environmental aspects play a key role in the selection of materials and processes.

HARTING's knowledge is practical know-how that generates synergy effects.

HARTING commands decades of experience with regard to the applications conditions involved in connections in telecommunications, computer, network and medical technologies, as well as industrial automation technologies, e.g. in the mechanical engineering and plant engineering areas, in addition to the power generation industry and the transportation sector. HARTING is highly conversant with the specific application areas in all of these technology fields. In every solution approach, the key focus is on the application. In this context, uncompromising, superior quality is our hallmark. Every new solution found invariably flows back into the **HARTING** technology pool, thereby enriching our resources. And every new solution we go on to create will draw on this wealth of resources in order to optimize each and every individual solution. **HARTING** is synergy in action.

Ν	0	te	S																		HART	TING
								 0			60							 	 			
						ļ			 													
						<u> </u>																
		-	1	-	-				 	 <u> </u>								 		 		

Directory	HARTING
Coaxial and metric connectors	Chapter
harbus [®] HM Standard, 2.00 mm pitch	00
harbus [®] HM with 6 rows, 2.00 mm pitch	02
	03
Micro Card Edge connector, 0.8 mm pitch	05
Mini Coax Standard low-profile single-row	07
Mini Coax cable assemblies and accessories	08
harlink°	11
Tooling	15
Signal integrity support	16
Customer request form	20
List of part numbers	30
Company addresses	40

HARTING eCatalogue

The **HARTING eCatalogue** is an electronic catalogue with a part configuration and 3D components library.

Here you can choose a connector according to your requirements. Afterwards you are able to send your inquiry directly to a HARTING sales partner.

The drawings to every single part are available in PDF-format.

The parts are downloadable in 2D-format (DXF) and 3D-format (IGES, STEP).

The 3D-models can be viewed with a VRML-viewer.

You can find the **HARTING eCatalogue** at **www.HARTING.com**.

-	and the same									NUM GUERRAR	
-								anaporan (Card Int		THE PROPERTY
		Indu / Enterlay to Solar									
Internet Correct INSPECTS* MA	unitaria Militaria Polici	(in a state of the									
Track and the	er semilion and pr	es the bull of these result	15 · · · ·								
Section 1	- Linear		THE REAL	Martine (1)			-			In the	
	CONTRACT F	Distriction D. # Co	A Disease		An arrange and	and shad					
r large	Fail matter 7	Dependent 1	7610.000	Quantity	fairs -	Terra Intel	To distant	Transfordered		2100 p.(1)	frank ad
- 65	UN ZU CHI ZU I	Apple1 Revelopment	3	-	100.000	AS 1010	2	some comme	10.8	420-7	10A
- 50	MARCH MAL	Annhai far Pinark Scar	2	-	147.78	med S*		Servicental	II.A	102-17	10.5
0	STREET STREET	Land Li Bald Insart Orine	20	and the	See 10	ined 414		Cirgenerated	18.8	10.1	85.6
- 10g	19420-0111-02	ADALL RE-FIRET	2 2	-	-141.42	ADD 554	52	Citestrate	II.A	807	154

Product selection

Product configuration

		store i ne pertentent in sille lin	
~		Internet allocation in the	for the state of
reak restrict	b New Kode / Katalogue ender		
and successive limit		Party and a second a	Income Story .
	parentels - Harrig Classenider Delle standisch die storte		

Product overview

Product combination

Product samples: Fast-track delivery to your desk, free of charge

The new free express sample service in the HARTING eCatalogue allows customers to order samples immediately, easily and completely free of charge. A broad selection from the device connectivity product portfolio is now available. If a product is unavailable, the system offers alternative products with similar features that can be requested at a mouse click.

The free samples are shipped within 24 hours at no cost to you. This service enables tremendous flexibility, especially in the design phase of projects.

General information

It is the customer's responsibility to check whether the components illustrated in this catalogue also comply with different regulations from those stated in special fields of applications. We reserve the right to modify designs or substance of content in order to improve quality, keep pace with technological advancement or meet particular requirements in production. No part of this catalogue may be reproduced in any form (print, photocopy, microfilm or any other process) or processed, duplicated or distributed by means of electronic systems without the prior written consent of HARTING Electronics GmbH, Espelkamp. We are bound by the German version only.

© HARTING Electronics GmbH, Espelkamp – All rights reserved, including those of the translation.

harbus [®] H M	Directory chapter 00	HARTING
arbus[®] HM Standard, 2.00 mm	n pitch	Page
harbus[®] HM Standard – genera	al information	00.04
Types with 5 + 2 rows		
Straight male connectors		00.12
Angled female connectors	3	00.24
Monoblock 47		
Straight male connectors		00.28
Angled female connectors	\$	00.30
Types with 8 + 2 rows		
Straight male connectors		00.32
Accessories		
Coding keys		00.35
Shrouds		00.36
Guiding system		00.41
Special connectors for VM	1E64x	00.42
	uration can be requested with the customer 0. Alternatively please contact your local	

harbus[®] HM tooling see chapter 15

00 03

harbus" HM

harbus® HM	us [®] HM
------------	--------------------

Design according	: IEC 61076-4-101
Approvals	
Underwriters Laboratories Inc.®	: cRus with their respective ratings documented in file E 102079
Number of contacts	: 55 – 220 signal (77 – 308 fully shielded); or customised
Contact spacing	: 2.00 mm
Working current	: 1 A @ 70 °C (80 % derating)
Test voltage U _{r.m.s.}	: AC 750 V min.
Contact resistance	: 20 mΩ max.
Insulation resistance	: 10 GΩ min.
Temperature range	: – 55 °C + 125 °C
Durability as per	: Performance level 2 = 250 mating cycles in total.
IEC 61076-4-101	<i>First 125 mating cycles</i> , then 4 days gas test using 0.5 ppm SO ₂ and 0.1 ppm H ₂ S (at 25 \pm 2 °C and 75 \pm 3 % humidity). Measurement of contact resistance.
	The <i>remaining 125 mating cycles</i> are subject to measurement of contact resistance and visual inspection. No abrasion of the contact finish through to the base material. No functional impairment.
	Performance level 1 = 500 mating cycles in total.
	<i>First 250 mating cycles</i> , then 10 days gas test using 0.5 ppm SO ₂ and 0.1 ppm H ₂ S (at 25 \pm 2 °C and 75 \pm 3 % humidity). Measurement of contact resistance.
	The <i>remaining 250 mating cycles</i> are subject to measurement of contact resistance and visual inspection. No abrasion of the contact finish through to the base material. No functional impairment.
Termination technique	: compliant press-in
Mating force	: 0.75 N/pin max.
Withdrawal force	: 0.15 N/pin min.
Materials	
Mouldings	: Thermoplastic resin, glass-fibre filled, UL 94-V0
Contacts	: Copper alloy
Contact surface Contact zone male Contact zone female Press-in zone	 Au/PdNi/Ni, contacts are treated with Bellcore recommended lubricant (PPE) Au/Ni, contacts are treated with Bellore recommended lubricant (PPE) Ni
Packaging	: Tube

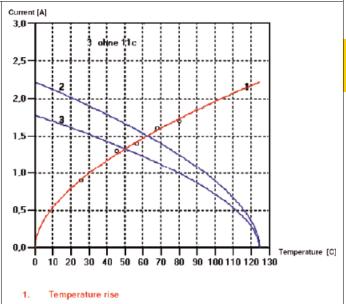
harbus[»] HM

Due to the high deformation capability and resilience of **harbus**[®]**HM** press-in contacts, they can be easily and repeatedly removed in case of repairs without impairment to their functioning.

harbus[®] **HM** press-in contacts are extremely versatile and offer a reliable electrical contact, therefore they are especially well suited for applications with these surfaces.

Please contact us for detailed test reports.

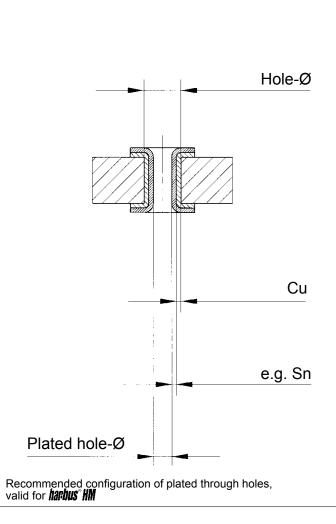
Benefits of press-in technology


- Thermal shocks associated with the soldering process and the risk of the board malfunction are avoided.
- No need for the subsequent cleaning of the assembled pcb's
- Unlimited and efficient processing of partially goldplated pins for rear I/O - manual soldering is no longer necessary!

Recommended configuration of plated through holes

The press-in zone of the **harbus**^{\circ} **HM** connectors is approved to be used with a plated through hole according EN 60352-5 with a diameter of $0.60^{\pm 0.05}$ mm (drilled hole $0.7^{\pm 0.02}$ mm).

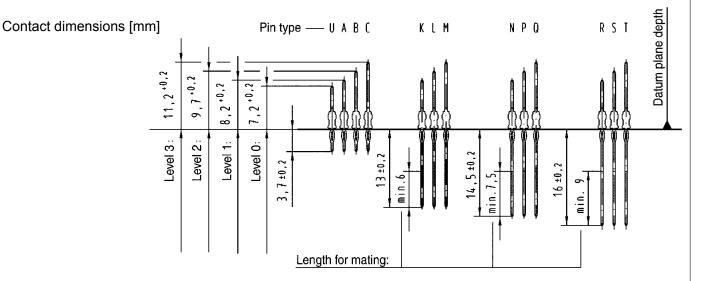
Based on our experiences regarding the production process of the PCB manufacturer, we recommend a plated through hole configuration like shown in the below spreadsheet. To achieve the recommended plated through hole diameter, it is important to specify especially the drilled hole diameter of 0.7 ± 0.02 mm to your PCB supplier.


Tin plated	Hole-Ø	0.7 ^{±0.02} mm
PCB (HAL)	Cu	min. 25 µm
	Sn	max. 15 µm
	Plated hole-Ø	0.60-0.65 mm
Chemical	Hole-Ø	0.7 ^{±0.02} mm
tin plated PCB	Cu	min. 25 µm
	Sn	min. 0.8 µm
	Plated hole-Ø	0.60-0.65 mm
Au / Ni plated PCB	Hole-Ø	0.7 ^{±0.02} mm
	Cu	min. 25 µm
	Ni	3-7 µm
	Au	0.05-0.12 µm
	Plated hole-Ø	0.60-0.65 mm
Silver plated PCB	Hole-Ø	0.7 ^{±0.02} mm
	Cu	min. 25 µm
	Ag	0.1-0.3 µm
	Plated hole-Ø	0.60-0.65 mm
OSP	Hole-Ø	0.7 ^{±0.02} mm
copper plated PCB	Cu	min. 25 µm
	Plated hole-Ø	0.60-0.65 mm

2. Derating

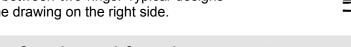
3. Derating at I max * 0.8 according to DIN IEC 512

Derating curve

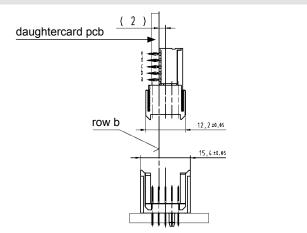


HARTING offers 13 contact lengths for *harbus*[®] *HM* male connectors: the standard mating length of 8.2 mm, pre-leading contacts with 9.7 mm and extra long contacts preferred for shielding with 11.2 mm mating length.

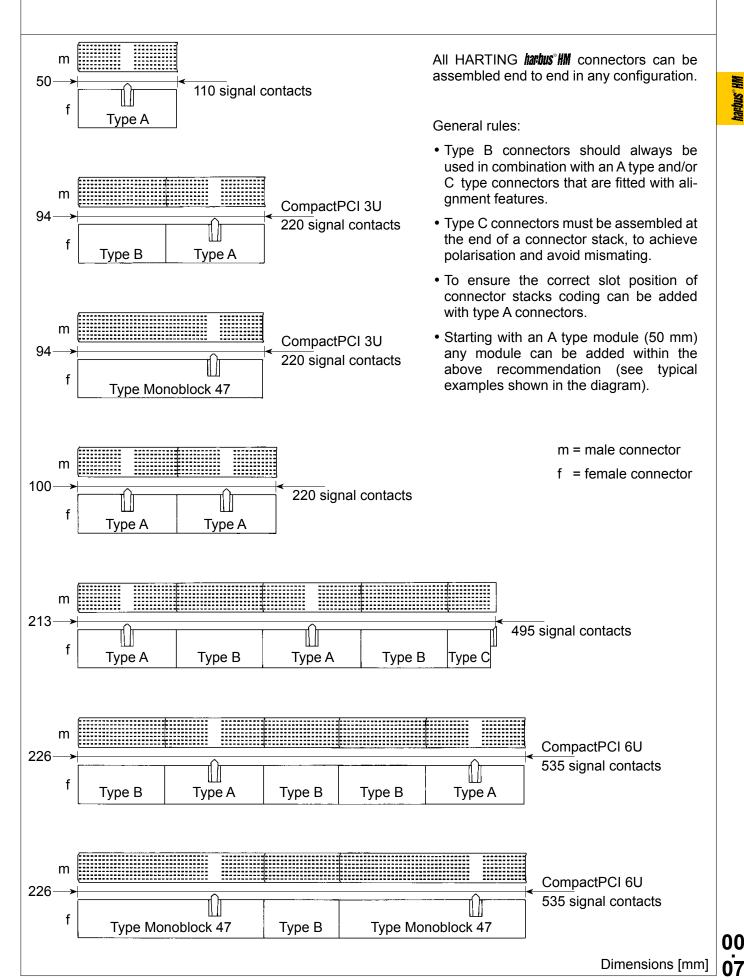
On the termination side the standard length is 3.7 mm. With the three termination lengths of 13.0, 14.5 and 16.0 mm even for rear I/O applications different mating levels are possible, depending on the pcb thickness and shroud height. For the standard termination length, an extra short contact for special applications with a mating length of 7.2 mm is available.


The different contact lengths are designated with letters to identify them in the configurations. For special loadings please use the customer request form at the end of this catalogue.

All contacts are offered with press-in termination 'eye of the needle'. In accordance with the application they can be delivered in performance level 1 or 2.


Circuit density

When using the specified diameter of the finished through hole according to IEC 61076-4-101 $(0.6 \pm 0.05 \text{ mm})$ with an appropriate annular ring, the remaining distance between the rings is about 1 mm. Under the condition that the width of the track and the space between should be equal, two tracks of 0.2 mm width or three tracks of 0.14 mm width can be placed between two rings. Typical designs are shown in the drawing on the right side.


Alignment of male and female connector

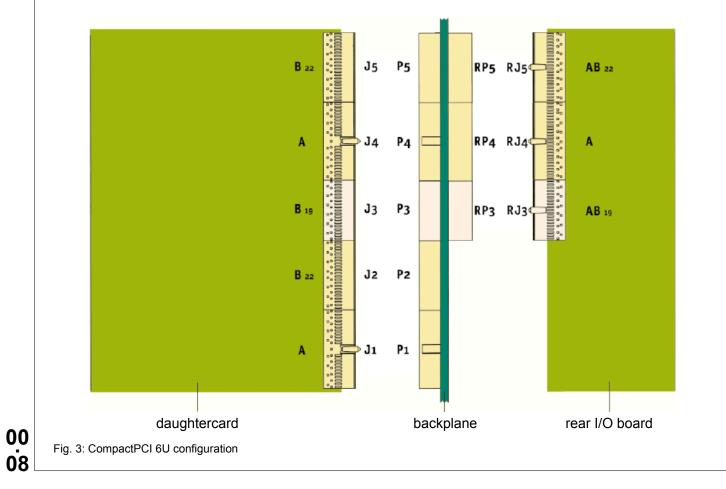
For the alignment of male and female connector, a common reference plane is defined. This reference plane is the top side of the daughtercard pcb and the contact rows "b" of the female and the male connector (see drawing).

Typical configurations on pcb

haebus" HM

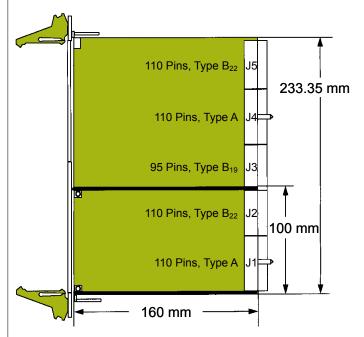
Improved guiding with AB-modules:

In accordance with the equipment practice each front side arrangement of *liarbus*"*HM* connectors shall have at least one A-module per slot to ensure that the connector can accommodate ± 2 mm alignment tolerances in rack systems.

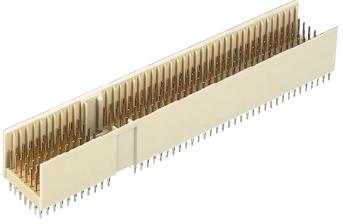

On some rear I/O arrangements the A-module's alignment capability cannot be utilised, because only B-modules are used for feed through. Consequently AB-modules were introduced to ensure guiding capabilities where formerly only B-modules were used. Those AB-modules represent a combination of A- and B-modules and are specified in **CompactPCI by PICMG 2.0 Rev. 3.0** for certain rear I/O applications.

The AB-modules have guiding pegs similar (but not mating compatible to prevent mismating) to those

of the A-module providing the same proven mating tolerances of \pm 2 mm. The AB-modules have no coding center but are fully equiped with contacts in order to maintain the full density as per the B-modules.


The **AB-female** connector mates either with an **AB-shroud** or with **AB-male** connectors. The centered pin positions of the shielding rows of male connectors are simply equipped with short spill contacts (if standard connector and shroud are used). This prevents that the guiding peg of the female AB-module stubbing on the feed through contacts of the front side's fixed connector. These fixed connector loadings are called **AB-friendly**.

The AB-male connector will not be equiped with shielded contacts in the centre where the guiding peg will engage.


CompactPCI® as a standard is maintained and enhanced by the PCI Industrial Computer Manufacturers Group (PICMG[®]). lt defines a combination of the electrical and logical specifications of the PCI standard and the mechanical specifications of the IEEE 1101 and IEC 60297 series of standards. The board connector has been developed from the IEC 61076-4-101 series of 2.0 mm connectors. The mounting location and dimensions for the 2.0 mm connectors are specified in IEEE 1101.11. Some additional mechanical definitions for 2.0 mm connectors in the Eurocard format are being specified in the VITA 30 draft.

Other international standards are listed in the $CompactPCI^{\textcircled{B}}$ standard for environmental and

related specifications. This gives *CompactPCI®* a solid foundation of international standards and practices for mechanical robustness.

The board format is either a 3U or a 6U Eurocard as defined in IEC 60297. There are two or five connectors specified for 3U or 6U boards respectively. Connectors are numbered from J1/ P1 through J5/P5 (bottom to top) on the board or backplane. Slave or peripheral boards need J1/P1 as a minimum, master or system boards need both J1/P1 and J2/P2 as a minimum. Backplanes should always have the full complement of connectors to be compatible with any type of board.

As opposed to the CPCI standard (pins numbered from bottom to top), the contact numbers on the connector are numbered from top to bottom (according to the IEC standard).

The front panel of CPCI cards may be equipped with additional keying pegs to code individual board types. There is also an extended pin length to remove any electro static charge before contacts on the rear connnectors mate. This pin also functions as a mechanical guide to position the board as straight as possible for insertion. This prevents pin bending and lowers the insertion force. Some applications could require up to 500 pins to be pushed into sockets simultaneously.

Connectors for high availability applications (hot swap) come with 3 different lengths of pins for a staged sequence of mate or break of contact.

Connector J1/P1 carries the signals for a 32 bit PCI bus (see table of contact assignments for J1/P1). Connector J2/P2 on a system card has the additional signals for a 64 bit PCI bus and some user-defined I/O (see table of contact assignments for J2/P2). On slave cards all of J2/P2 might be user-defined I/O except the top row which carries the signals for geographical addressing. J3/P3 should be reserved for other system bus definitions. J4/ P4 and J5/P5 are used for I/O or secondary buses, e.g. H.110 in telecom applications or for bridges into other buses like VMEbus. This is used to accommodate two bus platforms in one card cage on one backplane.

laebus" HM

Contact assignment on *CompactPCI®* system position (J1/P1)

	а	b	c	d	e	<u> </u>
25	+5 V	REQ64#	ENUM#	+3,3 V	+5 V	25
24	AD[1]	+5 V	V(I/O)	AD[0]	ACK64#	24
23	+3,3 V	AD[4]	AD[3]	+5 V	AD[2]	23
22	AD[7]	GND	+3,3 V	AD[6]	AD[5]	22
21	+3,3 V	AD[9]	AD[8]	M66EN	C/BE[0]#	21
20	AD[12]	GND	V(I/O)	AD[11]	AD[10]	20
19	+3,3 V	AD[15]	AD[14]	GND	AD[13]	19
18	SERR#	GND	+3,3 V	PAR	C/BE[1]#	18
17	+3,3 V	SDONE	SBO#	GND	PERR#	17
16	DEVSEL#	GND	V(I/O)	STOP#	LOCK#	16
15	+3,3 V	FRAME#	IRDY#	GND	TRDY#	15
14						14
13			Key Area			13
12						12
11	AD[18]	AD[17]	AD[16]	GND	C/BE[2]#	11
10	AD[21]	GND	+3,3 V	AD[20]	AD[19]	10
9	C/BE[3]#	IDSEL	AD[23]	GND	AD[22]	9
8	AD[26]	GND	V(I/O)	AD[25]	AD[24]	8
7	AD[30]	AD[29]	AD[28]	GND	AD[27]	7
6	REQ#	GND	+3,3 V	CLK	AD[31]	6
5	Bus Reserved	Bus Reserved	RST#	GND	GNT#	5
4	Bus Reserved	GND	V(I/O)	INTP	INTS	4
3	INTA#	INTB#	INTC#	+5 V	INTD#	3
2	тск	+5 V	TMS	TDO	TDI	2
1	+5 V	-12 V	TRST#	+12 V	+5 V	1
	a	Ь	c	d	e	

Contact assignment on *CompactPCI®* system position (J2/P2)

	a	b	C	d	e	
22	GA4	GA3	GA2	GA1	GA0	22
21	CLK6	GND	Reserved	Reserved	Reserved	21
20	CLK5	GND	Reserved	GND	Reserved	20
19	GND	GND	Reserved	Reserved	Reserved	19
18	Bus Reserved	Bus Reserved	Bus Reserved	GND	Bus Reserved	18
17	Bus Reserved	GND	PRST#	REQ6#	GNT6#	17
16	Bus Reserved	Bus Reserved	DEG#	GND	Bus Reserved	16
15	Bus Reserved	GND	FAL#	REQ5#	GNT5#	15
14	AD[35]	AD[34]	AD[33]	GND	AD[32]	14
13	AD[38]	GND	V(I/O)	AD[37]	AD[36]	13
12	AD[42]	AD[41]	AD[40]	GND	AD[39]	12
11	AD[45]	GND	V(I/O)	AD[44]	AD[43]	11
10	AD[49]	AD[48]	AD[47]	GND	AD[46]	10
9	AD[52]	GND	V(I/O)	AD[51]	AD[50]	9
8	AD[56]	AD[55]	AD[54]	GND	AD[53]	8
7	AD[59]	GND	V(I/O)	AD[58]	AD[57]	7
6	AD[63]	AD[62]	AD[61]	GND	AD[60]	6
5	C/BE[5]#	GND	V(I/O)	C/BE[4]#	PAR64	5
4	V(I/O)	Bus Reserved	C/BE[7]#	GND	C/BE[6]#	4
3	CLK4	GND	GNT3#	REQ4#	GNT4#	3
2	CLK2	CLK3	SYSEN#	GNT2#	REQ3#	2
1	CLK1	GND	REQ1#	GNT1#	REQ2#	1
	a	b	c	đ	e	

In mechanical terms J1/P1 is a 25x5 matrix of contacts. Three rows of 5 contacts (rows 12 - 14) are not used for electrical contacts. Instead, plastic keys of different orientation and configuration are used to key board locations as to system or peripheral slot, voltage options, etc.

J2/P2 is a shortened connector with only 22 rows of contacts instead of 25 rows for a standard size. HARTING now offers monolithic versions with J1/P1 and J2/P2 combined in one single connector.

This combination together with some space left on the card to fit into guide rails makes maximum use of the 100 mm rear edge of the 3U Eurocard.

On a 6U card this connector setup is repeated on J4/P4 and J5/P5.

The J3/P3 connector is a shortened version of the 2.0 mm connector with 19 rows of 5 signal contacts.

The size results from the height of a 6U board (233 mm) which is more than double the height of a 3U board.

All connectors used for *CompactPCI*[®] are based on a 7 column pitch. The inner 5 columns are used for logic signals and power. The outer columns on either side are reserved for shielding or ground.

harbus" HM

00

The VMEbus has evolved over a period of more than 25 years to become the leading bus architecture in open industrial applications. The specification is an ANSI norm, the original specification has been extended to become a draft standard VME64x ANSI/VITA 1.1-1997. This draft standard includes the specification for the 5-row DIN compatible connector (IEC 61076-4-113) and for a centre connector J0/P0 on 6U VME cards, which is identical to J3/P3 in *CompactPCI*[®] systems.

In VMEbus systems it is possible to use custom connectors in the J0/P0 area (e.g. coax connectors). To prevent problems with non-mating backplanes it is strongly recommended to use front panel keying. The IEEE 1101 documents J0/P0 can also be used with rear transition modules for pluggable I/O cabling. As mentioned above, the contacts on this connector may be bussed. One example is the ATM CellBus, which is in the process of being standardised. The bus on J0/P0 connectors might actually be a plug-on mezzanine backplane rather than conducting traces integrated into the backplane itself.

The 2.0 mm J0/P0 connector in VME64x systems is used for additional I/O, for new high speed sub busses or I/O for mezzanine modules, e.g. IPmodules on VMEbus boards. The connector is placed on the Eurocard to work in combination with the non-metric original VMEbus connectors DIN 41 612 type C or the newer 5-row connector har-bus[®] 64. The mounting location and dimensions for the J0/P0 VMEbus connector (IEC 61076-4-101) is specified in IEEE 1101.11. The VMEbus 2.0 mm connector uses 5 columns of signal contacts and optional two additional outer columns on either side for shielding. All 95 signal contacts are user defined.

TING

haebus[®] HM

harbus® HM

harbus[°] HM

Type A

Male connectors, straight

Identification	of	Contact le mating side	termination side	Part number	Contact configuration
Туре А	110	8.2	3.7	17 01 110 1201 17 01 110 2201	A A
Туре А	132	8.2/ 11.2	3.7	17 01 132 1203 17 01 132 2203	A A
Туре А	132	8.2/ 11.2	3.7/ 13.0/ 16.0	17 01 132 1007 17 01 132 2007	K K
Туре А	154	8.2/ 11.2	3.7	17 01 154 1201 17 01 154 2201	C:CCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCCC
Туре А	110	9.7	3.7	17 01 110 1204 17 01 110 2204	B B
Туре А	154	9.7/ 11.2	3.7	17 01 154 1205 17 01 154 2205	C C

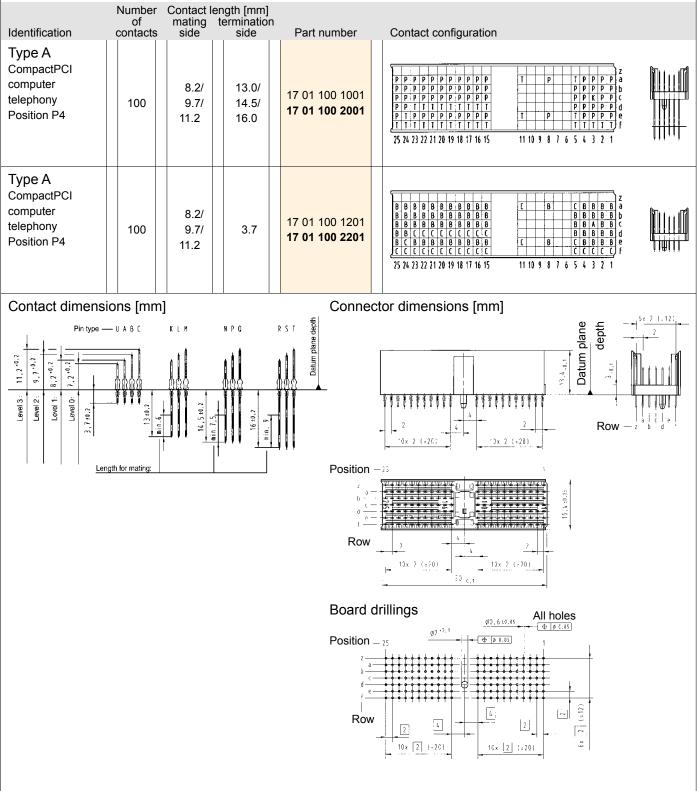
Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 00.14

Type A

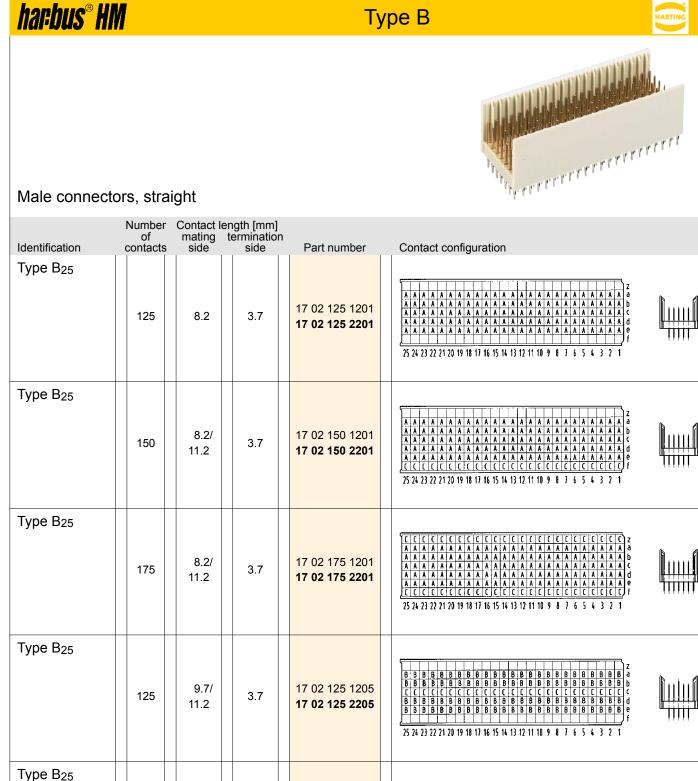
harbus" HM

Male connectors, straight

Identification	Number of contacts	Contact le mating side	ength [mm] termination side	Part number	Contact configuration	
Туре А	110	8.2	13.0	17 01 110 1402 17 01 110 2402	K K	
Туре А	154	9.7/ 11.2	14.5/ 16.0	17 01 154 1001 17 01 154 2001	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Type A CompactPCI Position P1	154	8.2/ 9.7/ 11.2	3.7	17 01 154 1203 17 01 154 2203	C C	
Type A CompactPCI Position P4	154	9.7/ 11.2	16.0	17 01 154 1604 17 01 154 2604	I I	
Type A CompactPCI Position P4	154	8.2/ 9.7/ 11.2	16.0	17 01 154 1603 17 01 154 2603	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	
Type A CompactPCI hot swap Position P1	154	8.2/ 9.7/ 11.2	3.7	17 01 154 1204 17 01 154 2204	C C	


Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 00.14

harbus" HM


Type A

Male connectors, straight

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

17 02 175 1202

17 02 175 2202

17 02 175 1006

17 02 175 2006

175

175

8.2/

9.7/

11.2

8.2/

11.2

3.7

13.0/

16.0

Type B₂₅

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

TTTTTTTTTTT

 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K

 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K
 K

25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1

harbus" HM

Туре	В
	_

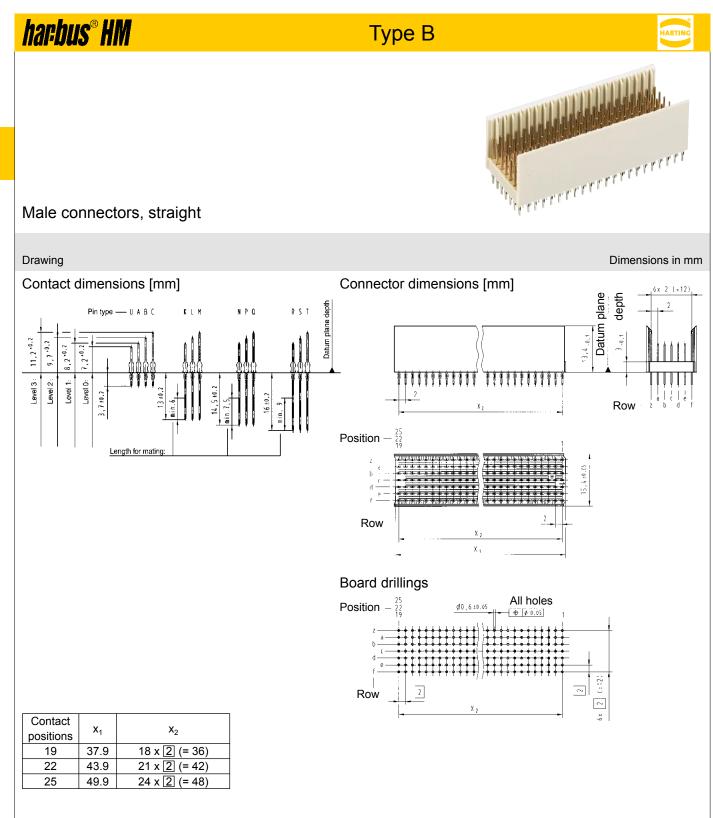
Male connectors, straight

harbus® HM

Identification	Number of contacts		ngth [mm] termination side	Part number	Contact configuration
Type B ₂₂	110	8.2	3.7	17 04 110 1201 17 04 110 2201	A A
Type B ₂₂	154	8.2/ 11.2	3.7	17 04 154 1201 17 04 154 2201	C C
Type B ₂₂ CompactPCI Position P2	154	9.7/ 11.2	3.7	17 04 154 1203 17 04 154 2203	C C
Type B ₂₂ CompactPCI computer telephony	132	8.2/ 9.7/ 11.2	13.0/ 14.5/ 16.0	17 04 132 1001 17 04 132 2001	P P P P K
Type B ₂₂ CompactPCI AB friendly	154	9.7/ 11.2	3.7/ 16.0	17 04 154 1010 17 04 154 2010	I I
Type B ₂₂ CompactPCI AB friendly	154	9.7/ 11.2	3.7/ 14.5/ 16.0	17 04 154 1002 17 04 154 2002	T T

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 00.18

Type B


harbus" HN

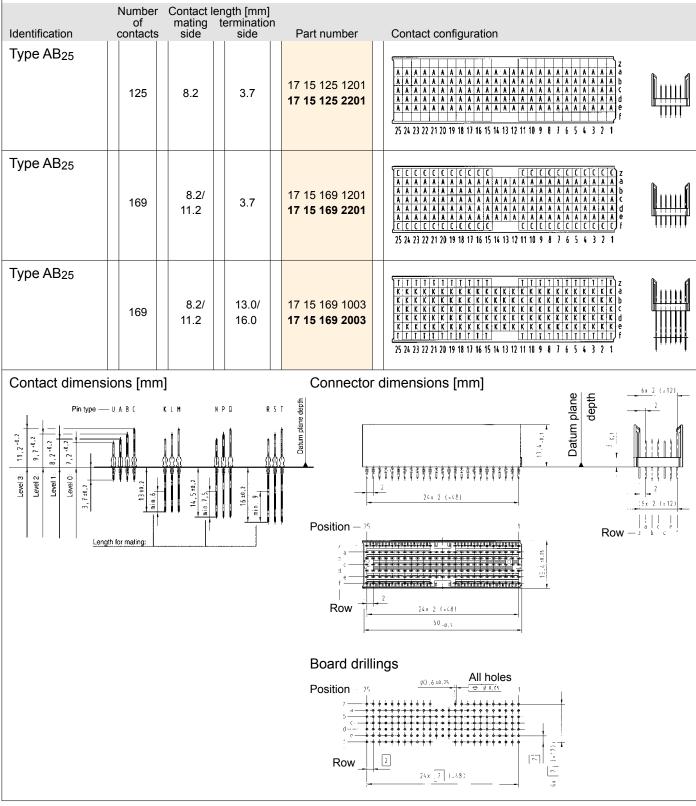
Male connectors, straight

Identification	Number of contacts	Contact le mating side	ngth [mm] termination side	Part number	Contact configuration
Type B ₁₉ VME Position J0	95	8.2	3.7	17 05 095 1201 17 05 095 2201	A A
Type B ₁₉ VME Position J0	133	8.2/ 11.2	3.7	17 05 133 1201 17 05 133 2201	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Type B ₁₉ VME Position J0	133	9.7/ 11.2	3.7	17 05 133 1203 17 05 133 2203	C C
Type B ₁₉ VME Position J0	95	8.2	13.0	17 05 095 1401 17 05 095 2401	K K
Type B ₁₉ CompactPCI AB friendly Position P3	133	9.7/ 11.2	3.7/ 16.0	17 05 133 1005 17 05 133 2005	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
Type B ₁₉ Compact PCI Position P3 VME Position J0	133	8.2/ 11.2	16.0	17 05 133 1602 17 05 133 2602	T T

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 00.18



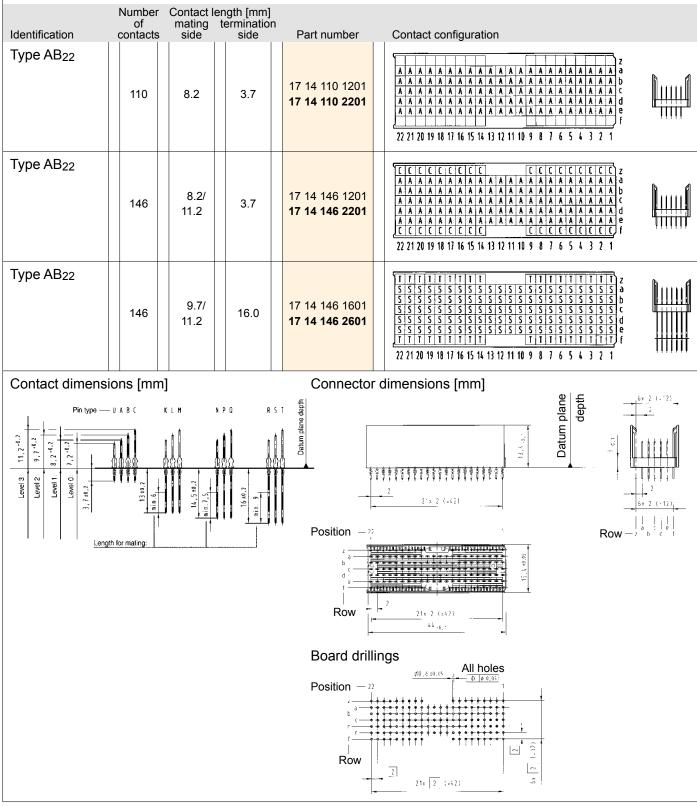
harbus" HH


Type AB

HARTING

haebus" HM

Male connectors, straight


Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

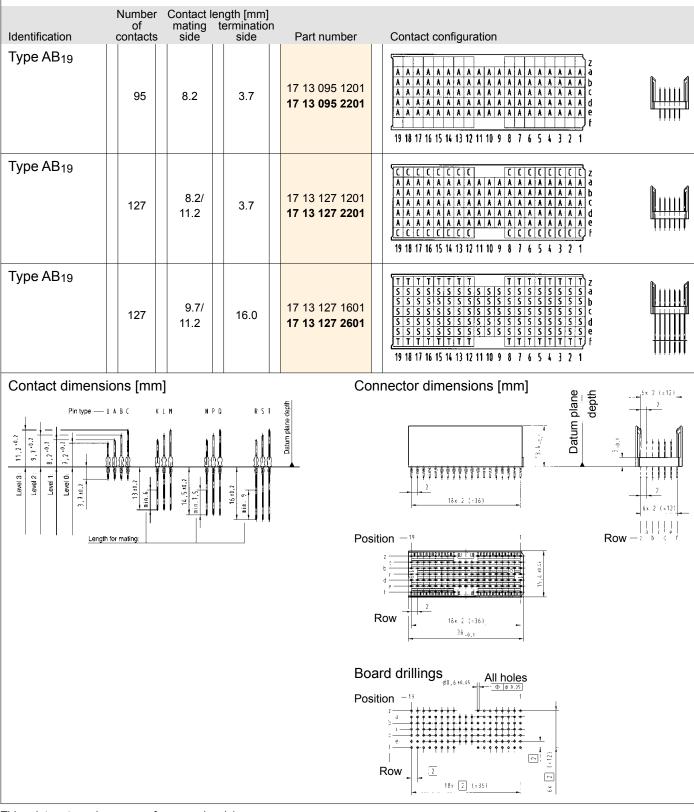
Type AB

Male connectors, straight

harbus® HM

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

00


Type AB

HARTING

haebus" HM

Male connectors, straight

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

harbus®	H	M
---------	---	---

Туре С

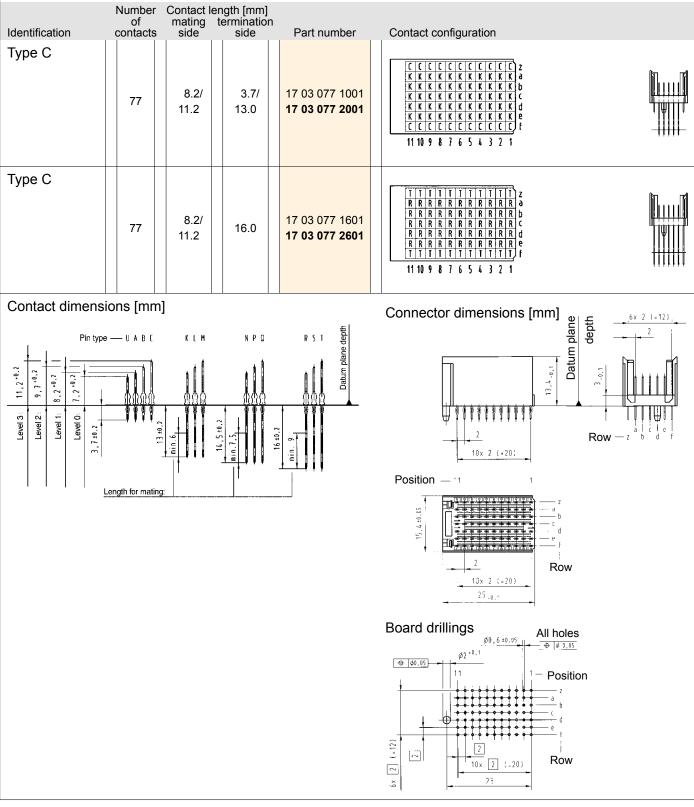
HARTING

harbus" HM

Male connectors, straight

Identification	of contacts	Contact le mating side	termination side	Part number	Contact configuration	
Туре С	55	8.2	3.7	17 03 055 1201 17 03 055 2201	A A	
Туре С	77	8.2/ 11.2	3.7	17 03 077 1201 17 03 077 2201	$\begin{tabular}{ c c c c c c c c c c c c c c c c c c c$	
Туре С	55	9.7	3.7	17 03 055 1202 17 03 055 2202	B B	
Туре С	77	9.7/ 11.2	3.7	17 03 077 1202 17 03 077 2202	C D B	Ĩ
Туре С	55	8.2	13.0	17 03 055 1401 17 03 055 2401	K K	
Туре С	66	8.2/ 11.2	13.0/ 16.0	17 03 066 1001 17 03 066 2001	K K	

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 00.23

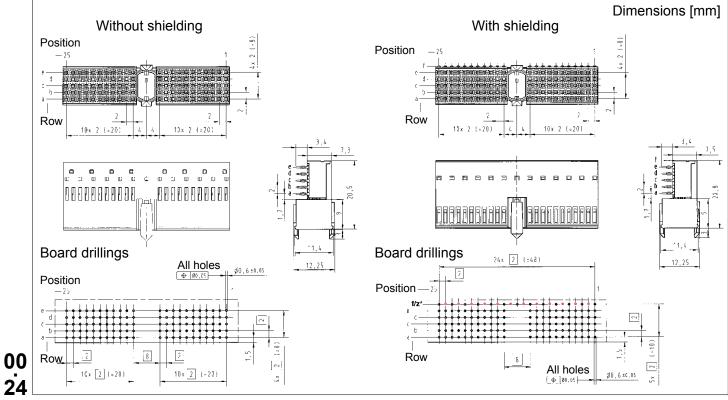


Type C

harbus" HN

Male connectors, straight

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2


Type A

Female connectors, angled

harbus® HM

Identification	No. of contacts	Contact length [mm termination side] Part number
Туре А	110	3.4	17 21 110 1101 17 21 110 2101
Type A with upper shield CompactPCI Positions J1, J4	110	3.4	17 21 110 1102 17 21 110 2102
Lower shield for type A connectors			17 21 000 4102
Type A with split upper shield CompactPCI computer telephony Position J4	90	3.4	17 21 090 1103 17 21 090 2103
Lower shield for type A connectors (rows 1 – 5) CompactPCI computer telephony			17 29 000 4102
Lower shield for type A connectors (rows 15 – 25) CompactPCI computer telephony			17 23 000 4102

Thin print part numbers: performance level 1

Bold print part numbers: performance level 2

* hole on even contact numbers only needed for lower shielding

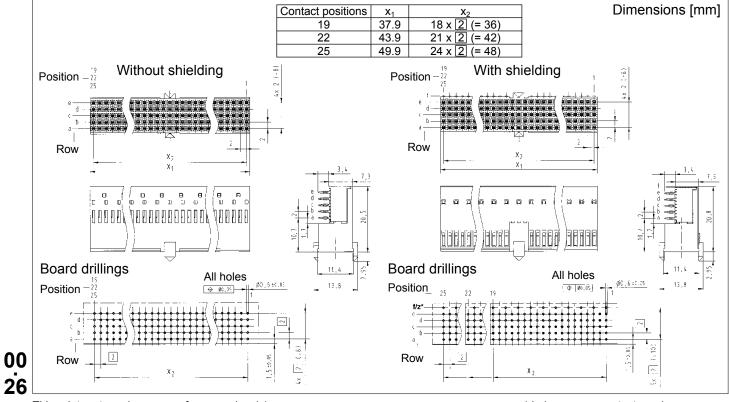
Type B

harbus" HM

Female connectors, angled

		o	-
Identification	No. of contacts	Contact length [mm termination side	ı] Part number
Type B ₁₉ VME, Position P0	95	3.4	17 25 095 1101 17 25 095 2101
Type B ₁₉ with upper shield CompactPCI, Position J3 – VME, Position P0	95	3.4	17 25 095 1102 17 25 095 2102
Lower shield for type B ₁₉ connectors			17 25 000 4102
Type B ₂₂	110	3.4	17 24 110 1101 17 24 110 2101
Type B ₂₂ with upper shield CompactPCI, Positions J2, J5	110	3.4	17 24 110 1102 17 24 110 2102
Lower shield for type B ₂₂ connectors			17 24 000 4102
Type B ₂₅	125	3.4	17 22 125 1101 17 22 125 2101
Type B ₂₅ with upper shield	125	3.4	17 22 125 1102 17 22 125 2102
Lower shield for type B ₂₅ connectors			17 22 000 4102
Contact positions 19 22 25	43.9	$\begin{array}{c} x_2 \\ 18 \text{ x } \boxed{2} \ (= 36) \\ 21 \text{ x } \boxed{2} \ (= 42) \\ 24 \text{ x } \boxed{2} \ (= 48) \end{array}$	Dimensions [mm]
Position -25 Without shielding	Position	19 -25 With sh	ielding
	c = c = c = c = c = c = c = c = c = c =		
	31.5		
Board drillings All holes	Board d	rillings	All holes
Position $-\frac{25}{22}$ $e^{\frac{2}{2}}$	Position - ^{1/z*}		<u><u><u></u></u><u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u><u></u></u></u>

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2


Type AB

HARTING

Female connectors, angled

Identification	C No. of contacts	ontact length [mm termination side	n] Part number
Type AB ₁₉	95	3.4	17 33 095 1101 17 33 095 2101
Type AB ₁₉ with upper shield CompactPCI, Position RJ3	95	3.4	17 33 095 1102 17 33 095 2102
Lower shield for type AB ₁₉ connectors			17 33 000 4102
Type AB ₂₂	110	3.4	17 34 110 1101 17 34 110 2101
Type AB ₂₂ with upper shield CompactPCI, Positions RJ2, RJ5	110	3.4	17 34 110 1102 17 34 110 2102
Lower shield for type AB ₂₂ connectors			17 34 000 4102
Type AB ₂₅	125	3.4	17 35 125 1101 17 35 125 2101
Type AB ₂₅ with upper shield	125	3.4	17 35 125 1102 17 35 125 2102
Lower shield for type AB ₂₅ connectors			17 21 000 4102

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 * hole on even contact numbers only needed for lower shielding

Type C

harbus" HM

Female connectors, angled

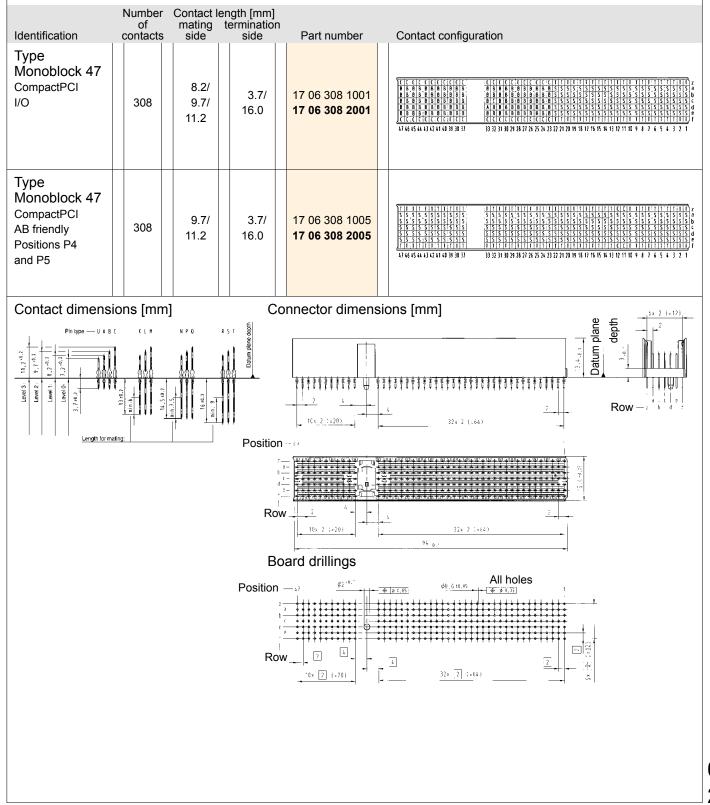
Identification	(No. of contacts	Contact length [mm termination side	l] Part number
Type C	55	3.4	17 23 055 1101 17 23 055 2101
Type C with upper shield	55	3.4	17 23 055 1102 17 23 055 2102
Lower shield for type C connectors			17 23 000 4102
Without shielding 11 1 – Position 11 1 – Position 10 2 (20) 10 2 (20) 10 2 (20) 10 2 (20) 10 2 (20) 10 2 (20) 10 2 (20) 10 2 (20) 10 10 10 10 10 10 10 10 10 10 10 10 10 11 10 11 11 11 11 11 11 11 11 11 11 11 11 11 </td <td>Board</td> <td>With shieldi</td> <td></td>	Board	With shieldi	
Position -11 $e^{\frac{00.6 \pm 0.35}{1}}$ $e^{\frac{00.6 \pm 0.35}{1}}$	Position #2 e- c a- Row	c 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6	All holes

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

Type Monoblock 47

HARTING

Male connectors, straight


Identification	Number of contacts	Contact le mating side	ength [mm] termination side	Part number	Contact configuration
Type Monoblock 47	220	8.2	3.7	17 06 220 1201 17 06 220 2201	1 1
Type Monoblock 47	308	8.2/ 11.2	3.7	17 06 308 1201 17 06 308 2201	¥E_EELECTCECTCECECECECECECECECECECECECECECE
Type Monoblock 47	220	9.7	3.7	17 06 220 1202 17 06 220 2202	B B
Type Monoblock 47 CompactPCI Positions P1 and P2	308	8.2/ 9.7/ 11.2	3.7	17 06 308 1202 17 06 308 2202	CICICICICICICICICICICICICICICICICICICI
Type Monoblock 47 CompactPCI hot swap	308	8.2/ 9.7/ 11.2	3.7	17 06 308 1203 17 06 308 2203	C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_C_
Type Monoblock 47 CompactPCI computer telephony	232	8.2/ 9.7/ 11.2	3.7	17 06 232 1201 17 06 232 2201	B B B B C C B C B C

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2 Connector dimensions see page 00.29

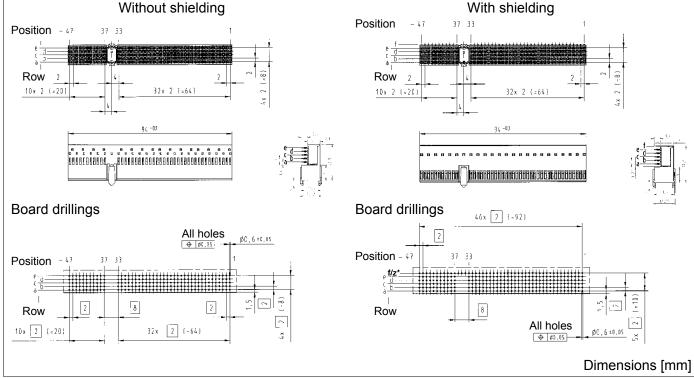
Type Monoblock 47

Male connectors, straight

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

haebus" HM

Type Monoblock 47


HARTIN

Female connectors, angled

harbus® HM

Identification	(No. of contacts	Contact length [mm termination side	ו] Part number
Type Monoblock 47	220	3.4	17 26 220 1101 17 26 220 2101
Type Monoblock 47 with upper shield	220	3.4	17 26 220 1102 17 26 220 2102
Type Monoblock 47 with upper shield CompactPCI computer telephony	200	3.4	17 26 200 1103 17 26 200 2103
Lower shield for type Monoblock 47 connectors			17 26 000 4102
Lower shield for type Monoblock 47 connectors (rows 1 – 22) CompactPCI computer telephony			17 24 000 4102
Lower shield for type Monoblock 47 connectors (rows 23 – 27) CompactPCI computer telephony			17 29 000 4102
Lower shield for type Monoblock 47 connectors (rows 37 – 47) CompactPCI computer telephony			17 23 000 4102
Without chielding		۱۸/itb	shielding

* hole on even contact numbers only needed for lower shielding

Bold print part numbers: performance level 2

Thin print part numbers:

performance level 1

1	۷c	otes	6															HAR	TING	
	-				 		 	 			 	 	 		 	 	 		[
							 		 					22						
														 						 harbus" HM
																				 hart
					_		 		 		 	 	 	 						
					_				 		 			 						
					_				 		 									
				 	 	-	 													
					-				 		 									
				 	 	-	 													
																		-		
		-							 	 	 									
				0																
				 		-			 		 			 	 	 	 			
				 	 -	-	 	 	 		 	 		 	 	 				
					-		 		 	 	 	 			 	 				
					-				 		 									
					-				 		 									
		_																		
						-	 			 00										
																				 00 31
																				51

harbus® HM

harbus" HM

Type D

Male connectors, straight

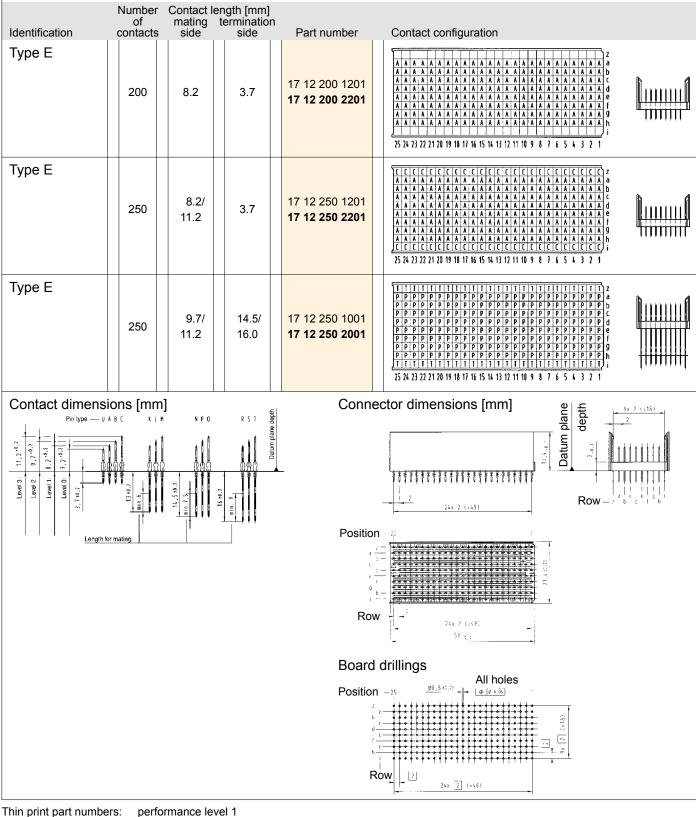
Identification	Number of contacts	mating	ength [mm] termination side	Part number	Contact configuration
Туре D	176	8.2	3.7	17 11 176 1201 17 11 176 2201	
Туре D	220	8.2/ 11.2	3.7	17 11 220 1201 17 11 220 2201	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$
Туре D	220	9.7/ 11.2	14.5/ 16.0	17 11 220 1001 17 11 220 2001	I I T
Contact dimens] 1 NPO	R 2 I Ba	Conn	
Level 3: 11, 2.0, 2 Level 1: 8, 2 0, 1 Level 1: 8, 2 0, 2 Level 1: 8, 2 0, 2 Level 1: 1, 0, 2 Level 1: 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,		14, 5, 6, 2 16, 1, 5 16, 1, 5 10, 1, 5 10, 1, 5 10, 1 10, 1, 5 10, 10 10, 10 10	15.62.2 11	- Positio	$n \xrightarrow{2}{\frac{1}{2}} \xrightarrow{2}{\frac{1}{2}} \xrightarrow{1}{\frac{1}{2}} \xrightarrow{2}{\frac{1}{2}} \xrightarrow{1}{\frac{1}{2}} \xrightarrow{2}{\frac{1}{2}} \xrightarrow{1}{\frac{1}{2}} \xrightarrow{1}{2} \xrightarrow{1}{\frac{1}{2}} \xrightarrow{1}{2} \xrightarrow{1}{2} \xrightarrow{1} \xrightarrow{1}{2}} \xrightarrow{1} \xrightarrow{1}{2} \xrightarrow{1}{2} \xrightarrow{1}{2} \xrightarrow$
				Board	1 drillings All holes
				Positio	φ ⁰ , (:=0, 05 Φ (φ 1, 05)

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

har:bus® HM

Type E

HARTING


haebus" HM

00

33

Male connectors, straight

Bold print part numbers: performance level 2

har:bus® HM

harbus" HM

Type DE

Male connectors, straight

	,	0			1 1
Identification	Number of contacts	Contact le mating side	ength [mm] termination side	Part number	Contact configuration
Type DE	200	8.2	3.7	17 10 200 1201 17 10 200 2201	A A
Type DE	244	8.2/ 11.2	3.7	17 10 244 1201 17 10 244 2201	C C
Type DE	244	9.7/ 11.2	14.5/ 16.0	17 10 244 1001 17 10 244 2001	I T
Contact dimens			RST #	Conne	ector dimensions [mm]
Level 3: 11, 2, 12, 12, 12, 12, 12, 12, 12, 12,	or mating:		16 H2 2	- Position	r = 25 $r = 25$ $r = 25$ $r = 1$
				Board	drillings
				Positior z d r r R	All holes 40.5 ± 0.05 40.5 ± 0.05 40.5 ± 0.05 40.5 ± 0.05 40.5 ± 0.05 40.5 ± 0.05 40.5 ± 0.05 1 1 1 1 1 1 1 1

Thin print part numbers: performance level 1 Bold print part numbers: performance level 2

har:bus® HM

Coding keys

haebus" HM

Coding keys are used to prevent mismating of boards. They can be inserted into the multifunctional area of male and female connectors with special tooling. This can be easily done after the connectors have been pressed in.

Coding keys have different bright and pre-defined RAL colours to simplify the identification. In the table below the colours and code numbers in acc. with the IEC 61076-4-101 are listed. They are used for the following applications:

- Cadmium yellow for CompactPCI to identify 3.3 V bus signalling
- Brilliant blue for CompactPCI to identify 5.0 V bus signalling
- Reseda green to prevent accidental board insertion in VME64x on CompactPCI applications
- Strawberry red to prevent accidental board insertion in telephony applications
- Pastel orange for user defined bus
- Nut brown for rear I/O and user I/O

Coding keys for female connectors

Code Coding Part Coding Code Part Colour Colour number number number number key key Pastel orange Pastel orange 3568 17 79 000 0010 1247 17 79 000 0020 RAL 2003 RAL 2003 Steel blue Steel blue 3478 17 79 000 0011 1256 17 79 000 0021 RAL 5011 RAL 5011 6 Slate grey Slate grey 3467 17 79 000 0012 1258 17 79 000 0022 RAL 7015 RAL 7015 8 Cadmium yellow Cadmium yellow 3456 RAL 1021 17 79 000 0013 1278 RAL 1021 17 79 000 0023 for CPCI, 3.3 V for CPCI, 3.3 V Reseda green Reseda green 2578 17 79 000 0014 1346 17 79 000 0024 Ral 6011 Ral 6011 Brilliant blue Brilliant blue 1567 RAL 5007 17 79 000 0015 2348 RAL 5007 17 79 000 0025 8 for CPCI, 5.0 V for CPCI, 5.0 V Blue lilac Blue lilac 1356 17 79 000 0016 2478 17 79 000 0026 RAL 4005 RAL 4005 Strawberry red Strawberry red 3567 1248 17 79 000 0018 17 79 000 0028 RAL 3018 RAL 3018 6 Nut brown Nut brown 1236 17 79 000 0019 4578 17 79 000 0029 RAL 8011 RAL 8011 8

Coding keys for male connectors

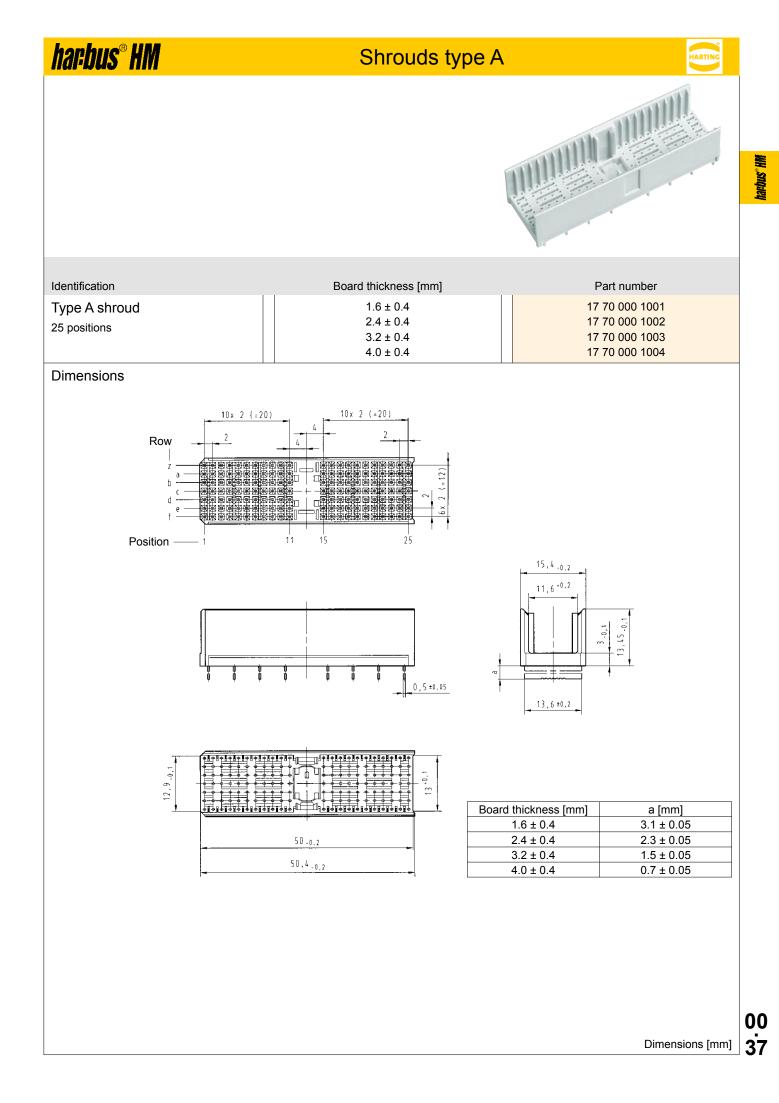
All codings are in acc. with the IEC 61076-4-101 specification

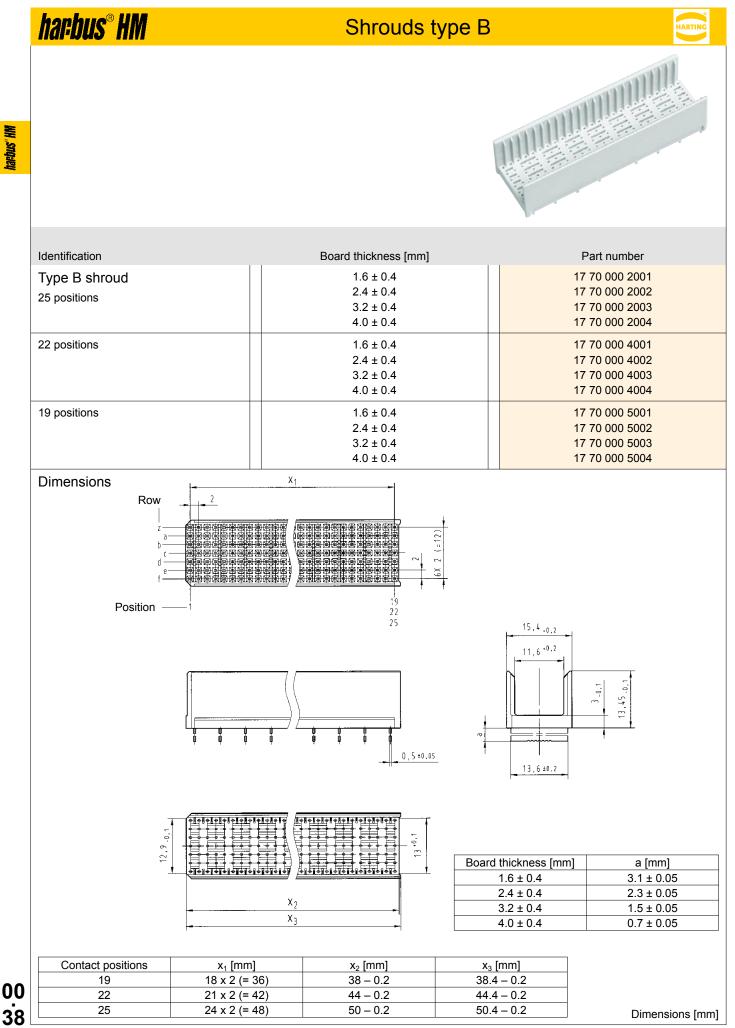
harbus® HM

ARTING

HARTING's *harbus*[®]*HM* shrouds protect the pins protruding the rear side of the backplane from irregular mating tolerances, thus ensuring a quality connection.

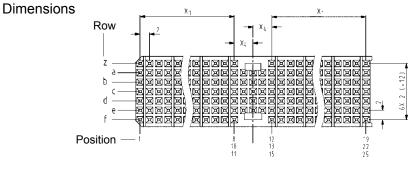
To accommodate pcb thickness, from 1.6 up to 4 mm nominal, the shrouds have integrated standoffs of corresponding height.

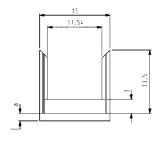

Thus forming a one piece solution that reduces assembling cost significantly.

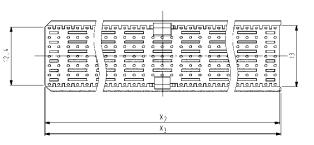

The shroud can be mounted without the additional requirement of spacers to ensure the desired pin lengths on the rear side of the pcb.

Fixing of the component is carried out on the rear post via a smooth friction fit process.

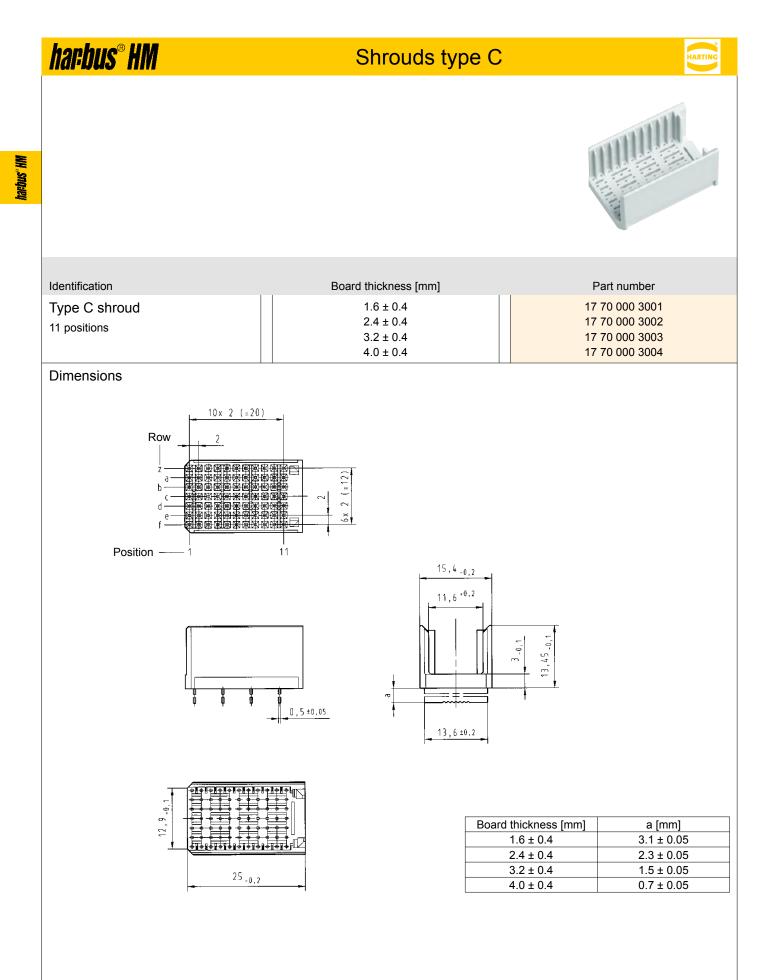
For ease of assembly the same tooling as for the press-in connectors on the front side is utilised for assembly.




Shrouds type AB



Identification	Board thickness [mm]	Part number
Type AB shroud 25 positions	$1.6 \pm 0.4 \\ 2.4 \pm 0.4 \\ 3.2 \pm 0.4 \\ 4.0 \pm 0.4$	17 70 000 8001 17 70 000 8002 17 70 000 8003 17 70 000 8004
22 positions	$ \begin{array}{c} 1.6 \pm 0.4 \\ 2.4 \pm 0.4 \\ 3.2 \pm 0.4 \\ 4.0 \pm 0.4 \end{array} $	17 70 000 7001 17 70 000 7002 17 70 000 7003 17 70 000 7004
19 positions	$ \begin{array}{c} 1.6 \pm 0.4 \\ 2.4 \pm 0.4 \\ 3.2 \pm 0.4 \\ 4.0 \pm 0.4 \end{array} $	17 70 000 6001 17 70 000 6002 17 70 000 6003 17 70 000 6004



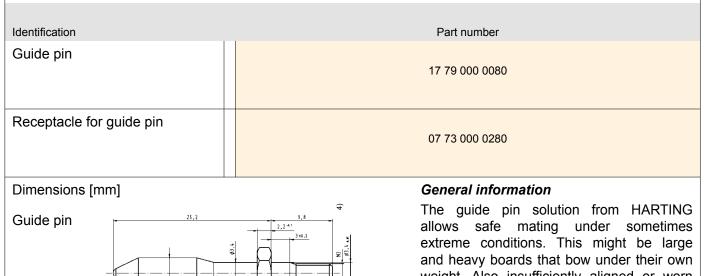
Board thickness [mm]	a [mm]
1.6 ± 0.4	3.1 ± 0.05
2.4 ± 0.4	2.3 ± 0.05
3.2 ± 0.4	1.5 ± 0.05
4.0 ± 0.4	0.7 ± 0.05

Contact positions	x ₁ [mm]	x ₂ [mm]	x₃ [mm]	x ₄ [mm]
19	7 x 2 (= 14)	37.9	38.2	4
22	8 x 2 (= 16)	43.9	44.2	3
25	10 x 2 (= 20)	49.9	50.2	4

00 39

harbus® HM

00 40


Dimensions [mm]

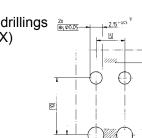
harbus® HM

Guiding system

arbus" HN

weight. Also insufficiently aligned or worn out rack systems can be tolerated better with the use of HARTING's guiding system, which also reduces the potential danger of damaging cards when being forced into flexing racks.

The guide pin and receptacle's design solution allows to overcome a 3 mm [.118'] offset between the backplane and the mating daughtercard. The reducing diameter of the pin (from 4.85 mm to 3.4 mm) ensures that its positioning task is smoothly transferred to the connectors as soon as they start to engage. Finally the thin diameter section of the quide pin is no longer positioned by the ferrule of the receptacle, ensuring that the pin is able to freely follow any movement imposed by the engaging connector. This ensures that there is no static stress between the connectors and the guiding system.

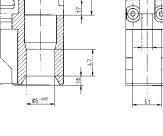

The rugged metal designed guide pin is screwed to the backplane with standard hexagon screws. Whereas the molded receptacle is designed with four pressin pegs that can be installed to the board together with the connectors.

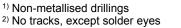
The tooling can be ordered with the part numbers 07790000157 (top tool) and 07790000158 (bottom tool).

2.75 .0.05

Receptacle

for guide pin

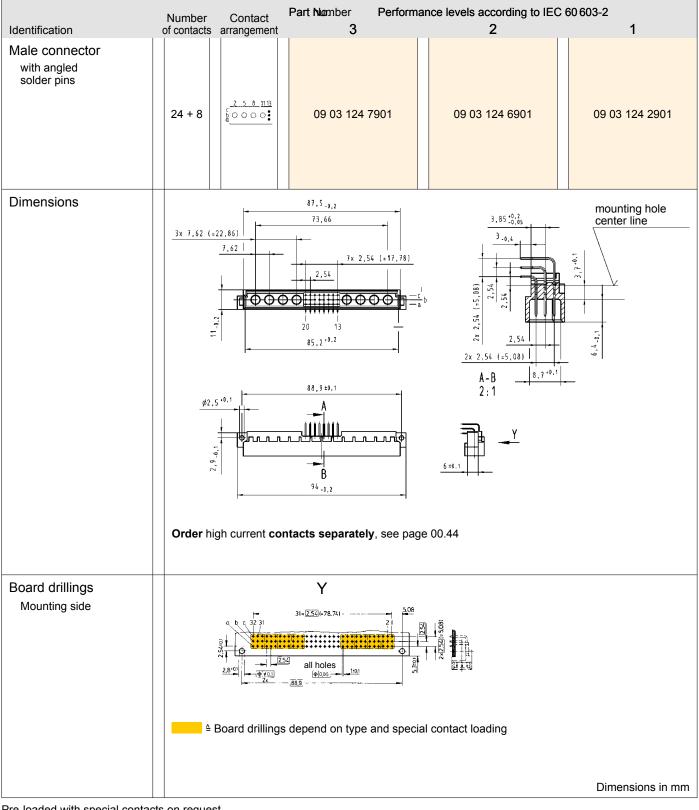



2× ⊕ ¢0.05

_____ ⊕_¢0.0


(Hexagon 7

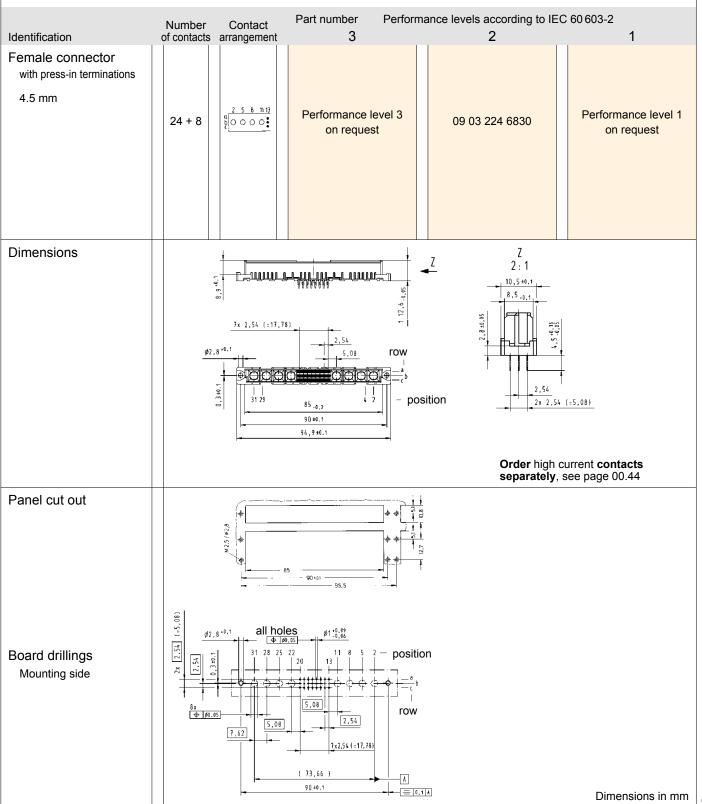
Ø6.9 · 0.0



³⁾ Limit area of components (valid for both pcb sides) ⁴⁾ Recommended board drilling is 3.5 (-0.05) mm

serrated lock washer DIN 6798-A-3.2 FSt

DIN 41612 Type M male connectors



Pre-loaded with special contacts on request Further types see DIN 41612 catalogue

harbus" HN

DIN 41612 Complementary type M-flat female connectors

Pre-loaded with special contacts on request Further types see DIN 41612 catalogue

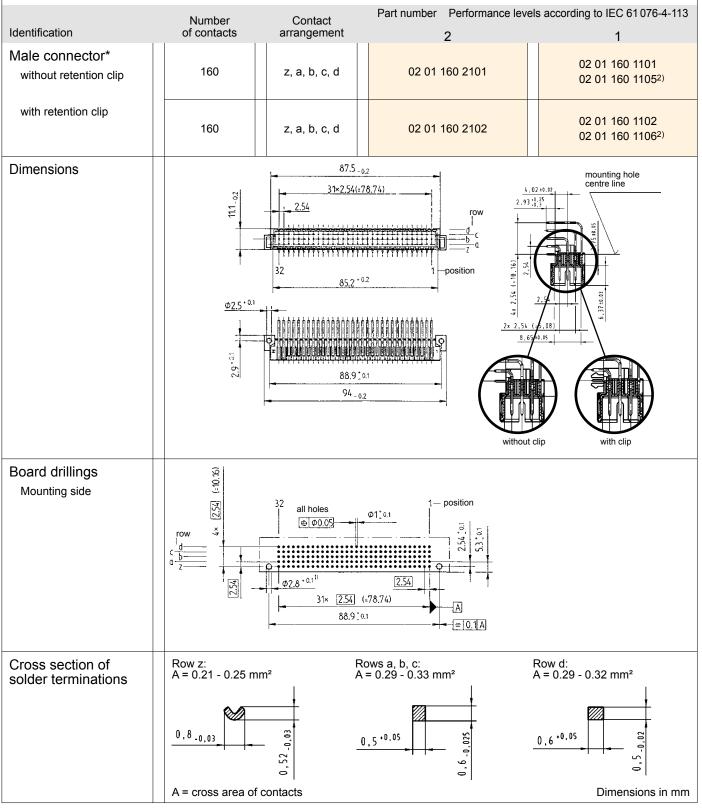
Special connectors for VME64x

High current contacts

Identification	Part number Performance level 1	Drawing Dimensions in mm
High current male contacts for male connectors ¹⁾	acc. to DIN 41626	Z2,4 <i>d</i> A Ø B wire gauge AWG [mm ²]
() for straight crimp termination 10 A 20 A 40 A	09 03 000 6113 09 03 000 6114 09 03 000 6115	Image: Second state sta
(II) for straight solder 10 A termination 20 A 40 A	09 03 000 6101 09 03 000 6102 09 03 000 6103	22,4
Leading contact 10 A 20 A 40 A	09 03 000 6111 09 03 000 6122 09 03 000 6133	^{23,1} ^{7,8} ²⁰ A 2.8 40 A 4.8
(III) for angled pcb termination		
max. 40 A*	09 03 000 6110	
(IV) max. 40 A*	09 03 000 6104	x y
Leading contact max. 40 A* * depending on the pcb design	09 03 000 6134	
High current female contacts for female connectors ¹⁾ for type M-flat		
Vfor press-in termination for solder termination40 A 40 A	09 03 000 6250 09 03 000 6225	
Crimping tool for high current contacts	09 99 000 0196	
Removal tool (V) incl. removal jacket for contact replacement in male and female connectors	09 99 000 0174	
Replacement removal jacket	09 99 000 0243	
Removal tool ()) for contact replacement in male connectors	09 99 000 0328	24 ca.116
¹⁾ Contact resistance max 15 mO		

 $^{1)}$ Contact resistance max. 1.5 $m\Omega$

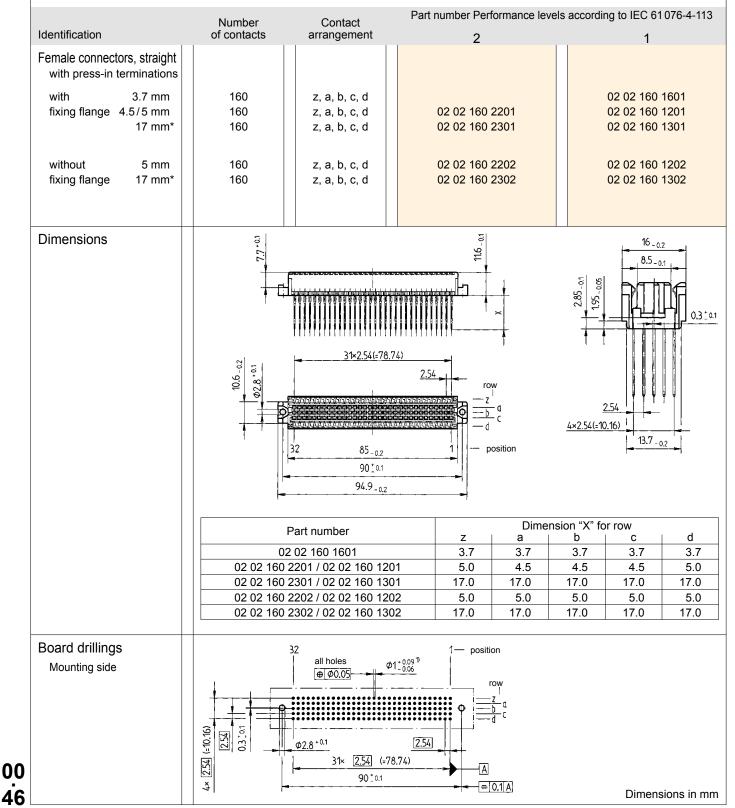
harbus" HM


00

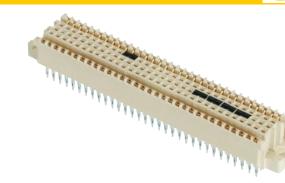
45

harbus®64

Male connectors

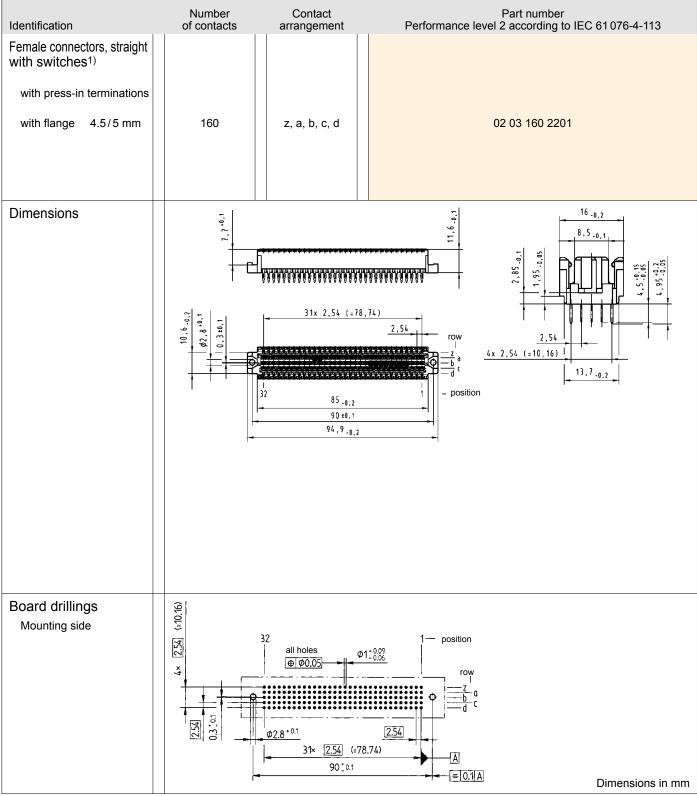

* Pre-leading contacts at positions d1, d2, d31 and d32
 ¹⁾ Recommendation for variants with clip: Drillings can be enlarged up to 3.1 mm ø to reduce standard mounting force
 ²⁾ Special variant with min. 1.27 μm (50 μinch) Au and SnPb on termination

Downloaded from Arrow.com.

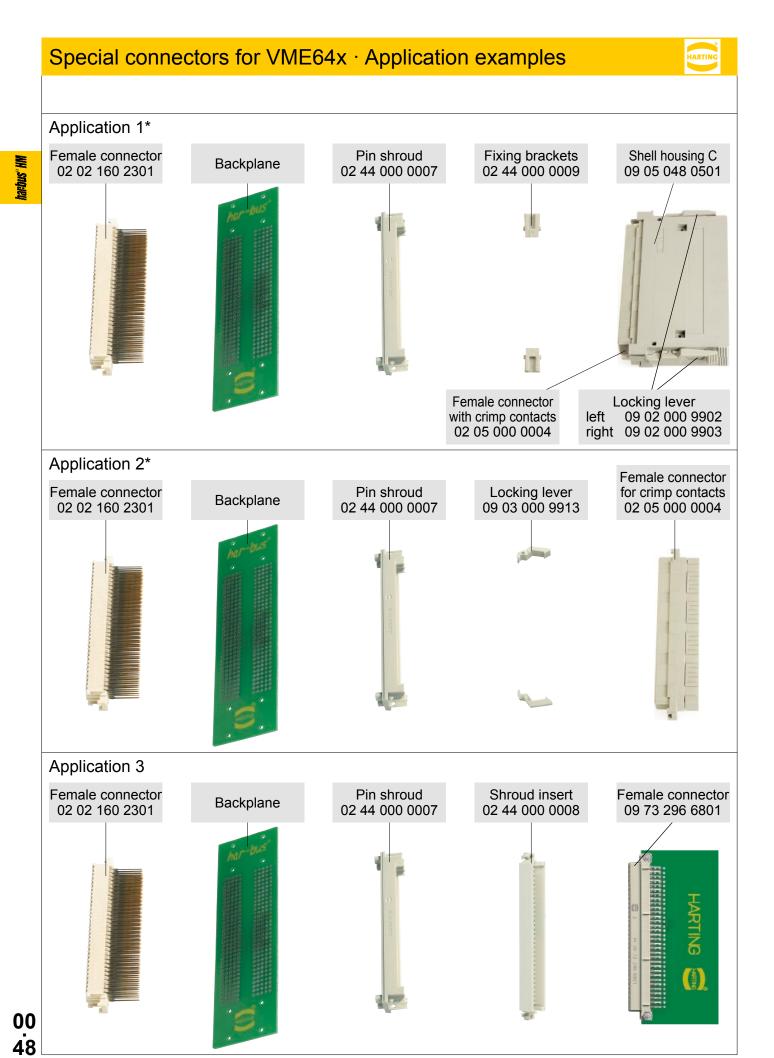


harbus®64

Female connectors



¹⁾ Selectively gold-plated Further types see DIN 41 612 catalogue

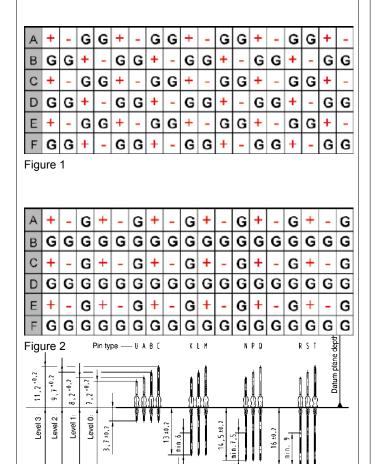

harbus°64

Female connectors

 $^{\rm 1)}$ Switching elements at positions a21-22, b4-5, b6-7, b8-9 and b10-11 Further types see DIN 41612 catalogue

harbus" HN

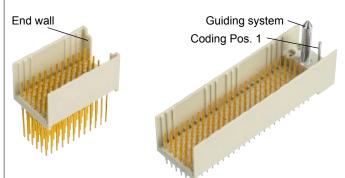
* Only for applications without rear P0-connector


har:bus®	MM 6-row	Directory chapter 02	HARTING	
<i>harbus</i> ®	with 6 rows, 2.00 mm pitch		Page	
harbus® H	M 6-row – general information		. 02.02	
Technical o	characteristics		. 02.03	harbus" HN 6-row
Straight ma	ale connectors with press-in termin	nation	. 02.04	
Angled fen	male connectors with press-in term	ination	. 02.08	
Angled fen	male connectors with solder (SMC)) termination	. 02.10	
Compatibil	lity with OBSAI		. 02.12	
				02 01

har:bus® HM 6-row

General information

In comparison to the standard 5-row *har-bus*[®] *HM* series, this new 6-row version offers a significantly higher contact density, thus permitting applications where very high contact density is important. Typically, for a signal transmission of 1.5 Gbps it is possible to obtain 7.5 differential pairs per cm of card edge (see figure 1). For a signal transmission of 2.5 Gbps at least 5 differential pairs per cm of card edge can be obtained (see figure 2).


Male and female connectors are both available with 72 or 144 contacts and can be supplied in reel or tube packaging.

Length for mating:

Figure 3

All male connectors can be supplied with end wall, coding pins and guiding system.

Female connectors with press-in termination

The 6-row female connector needs comparable space on the daughter card as the 5-row versions, as it has similar outer dimensions. Compared to the male connectors, coding pins and a guiding system are available upon request too.

Female connectors in SMC (Surface Mount Compatible) technology

Using the reflow soldering process, these 6-row female connectors in SMC technology can be soldered to the PCB at the same time as other SMC components. So the handling cost can be reduced significantly and there is no need for a separate press-in process. These connectors are made from a high temperature plastic material that can withstand up to 260°C (lead free soldering). To hold the connector securely on the PCB before the solder process, kinked contacts are offered as standard on both connector sides. Further SMC information see chapter 01.

harbus® HM 6-row

	: complementary to I	EC 61 076-4-101 (2 m	nm hard metric specifica	tion)
Number of contacts	: 72 or 144			
Contact spacing	: 2.00 mm (1.50 mm connectors)	between contact rows	s on the termination side	of female
Working current	: 1.0 A (24 °C temp.)	raise)		
-	1.5 A (52 °C temp.)	raise)		
	2.0 A (88 °C temp.)	raise)		
Test voltage U _{r.m.s.}	: min. 750 V	,		
Contact resistance	: < 20 mΩ			
Impedance (differential)				
Typical differential data rate				
Temperature range	: - 55 °C + 125 °C			
during reflow soldering	max. 260 °C (peak	temperature)		
Performance level*	: performance level 2	2 = 250 mating cycles		
	performance level 1	I = 500 mating cycles		
Termination technique	: press-in for male ar	nd female connectors		
•				
	SMC for female cor	nnectors, compatible v	vith lead-free solder proc	cess
	: min. 1.4 mm for ma	le and female connec	tors with press-in termin	
Pcb characteristics	: min. 1.4 mm for ma	•	tors with press-in termin	
Pcb characteristics Recommended configuration	: min. 1.4 mm for ma	le and female connec	tors with press-in termin	
Pcb characteristics Recommended configuration	: min. 1.4 mm for ma	le and female connectors w	tors with press-in termin vith SMC terminations	
Pcb characteristics Recommended configuration	: min. 1.4 mm for ma 1.6 mm - 2.4 mm fo	le and female connectors w press-in	tors with press-in termin vith SMC terminations	
Pcb characteristics Recommended configuration of plated through holes	: min. 1.4 mm for ma 1.6 mm - 2.4 mm for : Plated hole-Ø Hole-Ø	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm	
Pcb characteristics Recommended configuration	: min. 1.4 mm for ma 1.6 mm - 2.4 mm fo : Plated hole-Ø	le and female connectors w press-in 0.6 ^{± 0.05} mm	tors with press-in termin with SMC terminations SMC 0.7 ^{+ 0.07} -0.05 mm	
Pcb characteristics Recommended configuration of plated through holes	: min. 1.4 mm for ma 1.6 mm - 2.4 mm for : Plated hole-Ø Hole-Ø Cu Sn	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu m$	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu$ m	
Pcb characteristics Recommended configuration of plated through holes Mating force	: min. 1.4 mm for ma 1.6 mm - 2.4 mm for : Plated hole-Ø Hole-Ø Cu	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu m$	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu$ m	
Pcb characteristics Recommended configuration of plated through holes Mating force Materials	: min. 1.4 mm for ma 1.6 mm - 2.4 mm for : Plated hole-Ø Hole-Ø Cu Sn : < 0.75 N/pin	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	
Pcb characteristics Recommended configuration of plated through holes Mating force Materials Mouldings	 : min. 1.4 mm for ma 1.6 mm - 2.4 mm for 1.6 mm - 2.4 mm for Plated hole-Ø Hole-Ø Cu Sn : < 0.75 N/pin : Thermoplastic resimants 	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu m$	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	
Pcb characteristics Recommended configuration of plated through holes Mating force Materials Mouldings Contacts	 : min. 1.4 mm for ma 1.6 mm - 2.4 mm for : Plated hole-Ø Hole-Ø Cu Sn : < 0.75 N/pin : Thermoplastic resin : Copper alloy 	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	
Pcb characteristics Recommended configuration of plated through holes Mating force Materials Mouldings	 : min. 1.4 mm for ma 1.6 mm - 2.4 mm for 1.6 mm - 2.4 mm for Plated hole-Ø Hole-Ø Cu Sn : < 0.75 N/pin : Thermoplastic resimants 	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu m$ $5 - 15 \mu m$	
Pcb characteristics Recommended configuration of plated through holes Mating force Materials Mouldings Contacts Contact surface Packaging	 min. 1.4 mm for ma 1.6 mm - 2.4 mm for Plated hole-Ø Hole-Ø Cu Sn : < 0.75 N/pin : Thermoplastic resint : Copper alloy : Au/Ni 	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu$ m $5 - 15 \mu$ m	tors with press-in termin with SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu$ m $5 - 15 \mu$ m 94-V0	ations
Pcb characteristics Recommended configuration of plated through holes Mating force Materials Mouldings Contacts Contact surface	 min. 1.4 mm for ma 1.6 mm - 2.4 mm for Plated hole-Ø Hole-Ø Cu Sn < 0.75 N/pin Thermoplastic resints Copper alloy Au/Ni Male connectors and 	le and female connectors w press-in 0.6 ± 0.05 mm 0.7 ± 0.02 mm $30 - 50 \mu$ m $5 - 15 \mu$ m	tors with press-in termin vith SMC terminations SMC 0.7 + 0.07 - 0.05 mm 0.8 ± 0.02 mm $30 - 50 \mu$ m $5 - 15 \mu$ m 94-V0 with press-in termination	ations

* Other platings on request

Male connectors straight, with press-in termination

<i>harbus" HM</i> 6-row	Identification	Number of contacts	Contact lo mating	ength [mm] termination side	Part number	Contact configuration
	Connectors without flange without coding without endwall	72	8.2	3.7	17 41 072 1204 17 41 072 2204	A A A A A A A A A A
		144	8.2	3.7	17 44 144 1205 17 44 144 2205	$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$
	Connectors without flange without coding with endwall	72	8.2	3.7	17 42 072 1203 17 42 072 2203	$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
02 04		144	8.2	3.7	17 45 144 1204 17 45 144 2204	$\begin{bmatrix} A & A & A & A & A & A & A & A & A & A $
0 4						

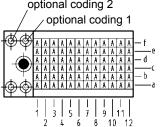
Please request the part number.

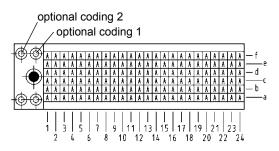
Connector dimensions see pages 02.06 and 02.07. The pin types A, B, C \dots R, S, T can be mixed in any configuration.

performance level 1 performance level 2

har:bus[®] HM 6-row

harbus" HM 6-row




Male connectors straight, with press-in termination


Identification	Number of contacts	Contact I mating side	en te	igth [mm] erminatio side	n	Part number	
Connectors with flange without coding without endwall	72	8.2		3.7		17 43 072 1209 17 43 072 2209	
	144	8.2		3.7		17 46 144 1207 17 46 144 2207	
Connectors with flange with coding 1 without endwall	72	8.2		3.7		17 43 072 1211 17 43 072 2211	
	144	8.2		3.7		17 46 144 1209 17 46 144 2209	
Connectors with flange with coding 2 without endwall	72	8.2		3.7		17 43 072 1210 17 43 072 2210	
	144	8.2		3.7		17 46 144 1208 17 46 144 2208	
Connectors with flange with coding 3 (= coding 1 + 2) without endwall	72	8.2		3.7		17 43 072 1212 17 43 072 2212	
	144	8.2		3.7		17 46 144 1210 17 46 144 2210	

Connector dimensions see pages 02.06 and 02.07. The pin types A, B, C \dots R, S, T can be mixed in any configuration. Please request the part number.

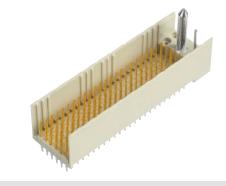
Contact configuration optional coding 2

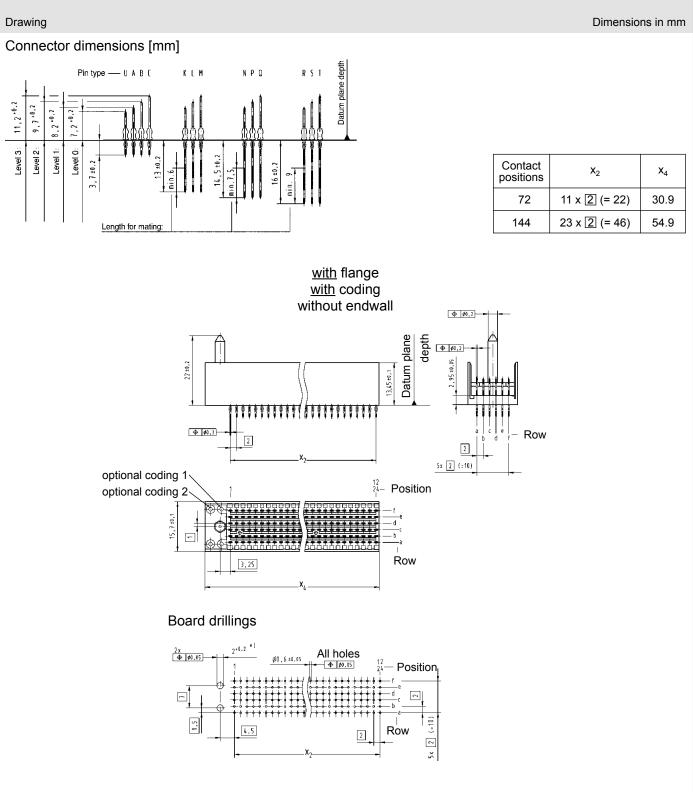
Thin print part numbers:

Bold print part numbers:

performance level 1 performance level 2

harbus® HM 6-row


Male connectors straight, with press-in termination harbus" HM 6-row

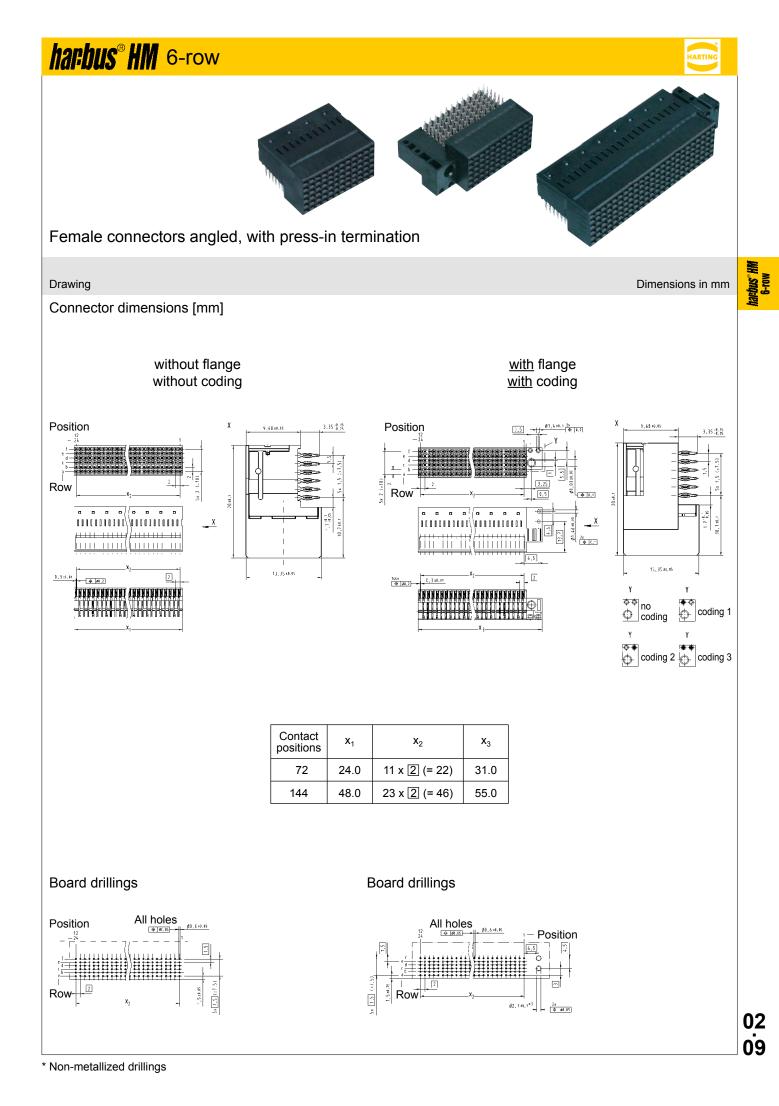

Drawing Dimensions in mm Connector dimensions [mm] Datum plane depth Pin type ---- U A B C NPQ KLM RS 11,2+0.2 9,7+0.2 18,2.0.2 7,2 *0.2 Level 3 : Level 0: Level 2: Level 1: 14,5±0.3 Contact 3,7±0.2 **x**₂ 16±0.2 **X**₁ X_3 positions 72 23.9 11 x 2 (= 22) 24.9 47.9 23 x 2 (= 46) 144 48.9 Length for mating: without flange without flange without coding without coding without endwall with endwall depth depth Datum plane Datum plane \$ \$0,2 **⊕** ¢0,2 95±0,05 95±0.05 13,45±0.1 13,45±0,1 **** ********** **⊕** Ø0,3 ⊕ ø0,3 Row Row 2 2 2 2 5x 2 (=10) 5x 2 (=10) Position Position 12 12 24 15,7±0.1 15,7±0,1 d h T. Row Row Board drillings **Board drillings** Position All holes Position All holes ¢0,6±0,05 ø0,6±0,05 12 24 12 24 - ⊕ Ø0,05 ⊕ Ø0,05 2 \sim Ь (=10) 5x 2 (=10) 2 Row Row ~ 02 06 š

har:bus® HM 6-row

Male connectors straight, with press-in termination

larbus" HM 6-row

* Non-metallized drillings

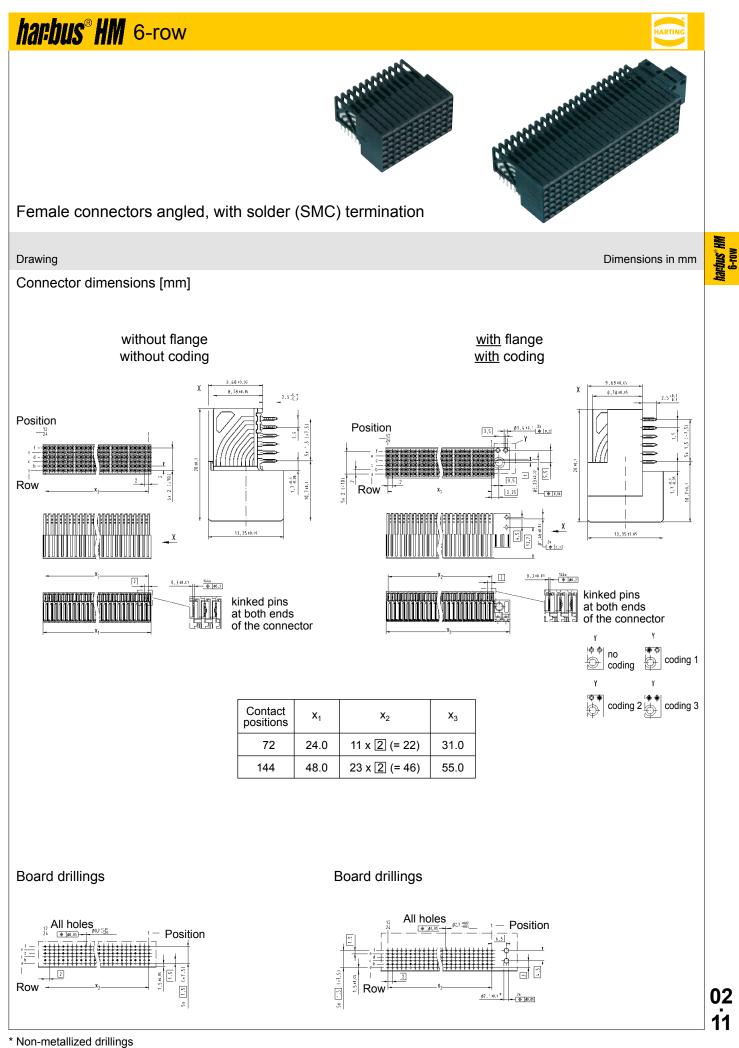


Female connectors angled, with press-in termination

<i>harbus" HM</i> 6-row	Identification	Number of contacts	Contact length [mm] termination side	Part number
har	Connectors without flange without coding	72	3.35	17 51 072 1102 17 51 072 2102
		144	3.35	17 54 144 1102 17 54 144 2102
	Connectors with flange without coding	72	3.35	17 52 072 1105 17 52 072 2105
		144	3.35	17 55 144 1105 17 55 144 2105
	Connectors with flange with coding 1	72	3.35	17 52 072 1106 17 52 072 2106
		144	3.35	17 55 144 1106 17 55 144 2106
	Connectors with flange with coding 2	72	3.35	17 52 072 1107 17 52 072 2107
		144	3.35	17 55 144 1107 17 55 144 2107
	Connectors with flange with coding 3 (= coding 1 + 2)	72	3.35	17 52 072 1108 17 52 072 2108
02 08		144	3.35	17 55 144 1108 17 55 144 2108
	Connector dimensions see page 02 09	1		Thin print part numbers:performance leve

Connector dimensions see page 02.09.

Downloaded from Arrow.com.



Female connectors angled, with solder (SMC) termination

<i>harbus" HM</i> 6-row	Identification	Number of contacts	Contact length [mm] termination side	Part number
han 1	Connectors without flange without coding	72	2.5	17 51 072 1802 17 51 072 2802
		144	2.5	17 54 144 1802 17 54 144 2802
	Connectors with flange without coding	72	2.5	17 52 072 1805 17 52 072 2805
		144	2.5	17 55 144 1805 17 55 144 2805
	Connectors with flange with coding 1	72	2.5	17 52 072 1806 17 52 072 2806
		144	2.5	17 55 144 1806 17 55 144 2806
	Connectors with flange with coding 2	72	2.5	17 52 072 1807 17 52 072 2807
		144	2.5	17 55 144 1807 17 55 144 2807
	Connectors with flange with coding 3 (= coding 1 + 2)	72	2.5	17 52 072 1808 17 52 072 2808
02 10		144	2.5	17 55 144 1808 17 55 144 2808
	Compostor dimensione and page 02.11		· .	This print part numbers performance lovel 1

Connector dimensions see page 02.11.

HARTING is a supporter member of OBSAI since September 2003.

The Open Base Station Architecture Initiative (OBSAI) has developed a comprehensive set of open specifications for key module interfaces within the base station architecture. This development will enable an open market of base station modules.

The OBSAI architecture provides a clear split in functionality and detailed internal interface specifications. This allows companies to create modules that are truly compatible in all OBSAI compliant base stations. OBSAI provides the entry for a new, competitive market for functionally standardized modules.

HARTING's *har-bus*[®] *HM* Signal and *HM* Power connectors meet OBSAI specifications and provide a reliable and cost effective solution for connecting plug-in units to the backplane. The connector solution available from HARTING technology group will offer full compatibility and intermateability with base station modules.

HARTING's activities in the wireless market are in line with those of OBSAI.

The OBSAI specifications allow HARTING the opportunity to support a large group of wireless base station manufacturers and module manufacturers with unified, state of art interconnection solutions.

harbus® HM Pov	wer
----------------	-----

Directory chapter 03

harbus [®] HM Power	Page
harbus [®] HM Power – general information	03.02
Technical characteristics	03.03
Angled male connectors with press-in termination	03.04
Angled male connectors with solder (SMC) termination	03.05
Straight female connectors with press-in termination	03.06
	1

har:bus® HM Power

50

45

40

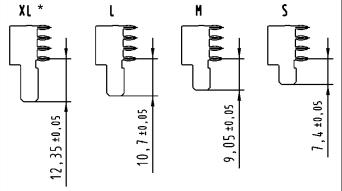
35

30

20 15

10

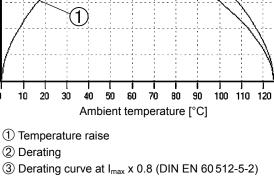
5 0


0

20 Current [A]

130

The *harbus" HM HM* Power connector is designed according to the OBSAI Specification V 1.1. It is well-suited to be used in conjunction with 2 mm harbus" HM connectors. The durability is according to IEC 61076-4-101 (250 mating cycles).


The straight female connector for the backplane is fitted with press-in contacts, the right angled male connector for daugther cards can be supplied with either press-in or PIHIR (Pin In Hole Intrusive Reflow) termination.

The compact, high temperature moulding can be loaded with up to four high current contacts. Four different contact lengths are available from 7.4 mm to 12.35 mm. This makes sequenced and non sequenced loadings possible (e.g. with GND and ENA). Any other contact assignments, also partially loaded, are available on request.

enable

haebus" HM Power

Loaded with four power contacts, each contact can

With a configuration of two power contacts, GND

and ENA, the current carrying capacity is even up to 23 A @ 70 °C / 80 % derating per contact.

carry up to 20 A @ 70 °C / 80 % derating.

2

The distance between adjacent contacts is 3 mm, which enables wider pcb traces, larger solder paste areas and an improved heat dissipation. For the female backplane connector no special tooling is necessary due to the flatrock design. For the male connector HARTING offers a special press-in tool (see chapter 15).

HARTING's harbus" HM Signal and Power connectors meet OBSAI (Open Base Station Architecture Initiative) specifications and provide a reliable and cost effective solution for connecting plug-in units to the backplane. The connector solutions available from the HARTING technology group will offer full compatibility and intermateability with base station modules.

Benefits:

- Small form factor
- High current rating up to 23 A per contact (OBSAI configuration)
- 3 level staggering (or even 4)
- Flatrock design
- Matched with harbus" HM 2 mm connectors

02

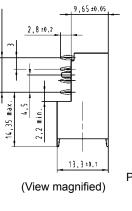
* Type XL on request

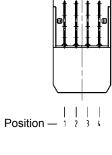
harbus[®] HM Power

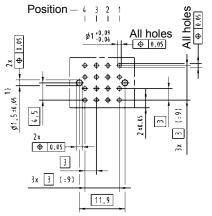
Technical characteristics

HARTING

Design according	: OBSAI System Spezifikation V 1.1	
Approvals		1
Underwriters Laboratories Inc.®	: c Rus with their respective ratings documented in file E 102079	
Number of contacts	: up to 4	
Contact spacing	: 3.00 mm	
Clearance and creepage distances between contacts	: > 2.3 mm	harbus" HM Power
Working current	: 23 A max. (OBSAI configuration) 20 A max. (fully loaded with power contacts)	
Test voltage U _{r.m.s.}	: AC 1500 V min.	
Contact resistance	: <1 mΩ	
Insulation resistance:	: > 10 GΩ	
Temperature range	: - 55 °C + 125 °C	-
during reflow soldering	220 °C for 2 minutes, 260 °C max. short-term	
Durability as per IEC 61 076-4-101	 Performance level 2 = 250 mating cycles in total. First 125 mating cycles, then 4 days gas test using 0.5 ppm SO₂ and 0.1 ppm H₂S (at 25 + 2 °C and 75 + 3 % humidity). Measurement of contact resistance. The remaining 125 mating cycles are subject to measurement of contact resistance and visual inspection. No abrasion of the contact finish through to the base material. No functional impairment. 	
To unit of the backwide of		_
Termination technique Male connectors	: Press-in or solder termination, suitable for (lead-free) pin-in-hole reflow soldering	
Female connectors	: Press-in termination	
Mating force Withdrawal force	: max. 4 N / contact : min. 0.5 N / contact	
	: MIN. U.5 N / CONTACT	
Materials		
Mouldings	: Thermoplastic resin, glass-fibre filled, UL 94-V0	
Contacts	: Copper alloy	
Contact surface	: Selectively gold plated (contact zone)	
Contact styles	: Standard, leading, lagging	-
Packaging		
Tube	: Male and female connectors	03
Tape & Reel	: On request for male solder connectors	03


harbus® HM Power



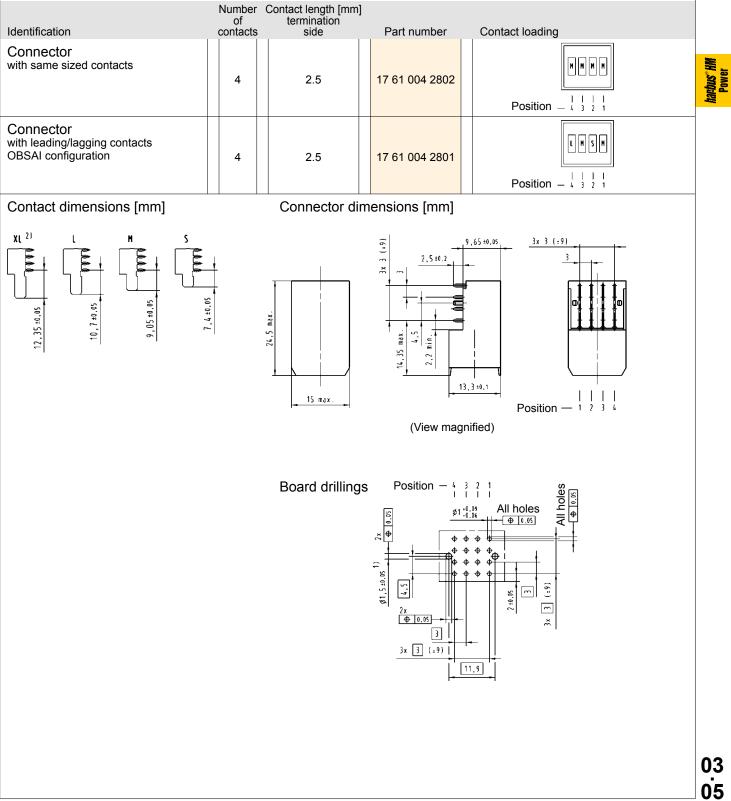

Male connectors angled, with press-in termination

	Identification	Number of contacts	Contact length [mm] termination side	Part number	Contact loading	
LUWEL	Connector with same sized contacts	4	2.8	17 61 004 2102	Position $-\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$	
	Connector with same sized contacts	4	2.8	17 61 004 2103	Position $-\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$	
	Connector with leading/lagging contacts OBSAI configuration	4	2.8	17 61 004 2101	Position $-\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$	
	Connector with leading contact	4	2.8	17 61 004 2104	Position $-\frac{1}{4}$ $\frac{1}{2}$ $\frac{1}{1}$	
	Contact dimensions [mm] Connector			limensions [mm]		
	12.35±0.05 9,05±0.05 7,4,±0.05	- - -	34 2 4 2 4 2 4 4 4 4 4 4 4 4 4 4 4 4 4 4	(e=) x x x x x x x x x x x x x x x x x x x	$\begin{array}{c} 3x \ 3 \ (29) \\ \hline \\ 3x \ 3x$	

Board drillings

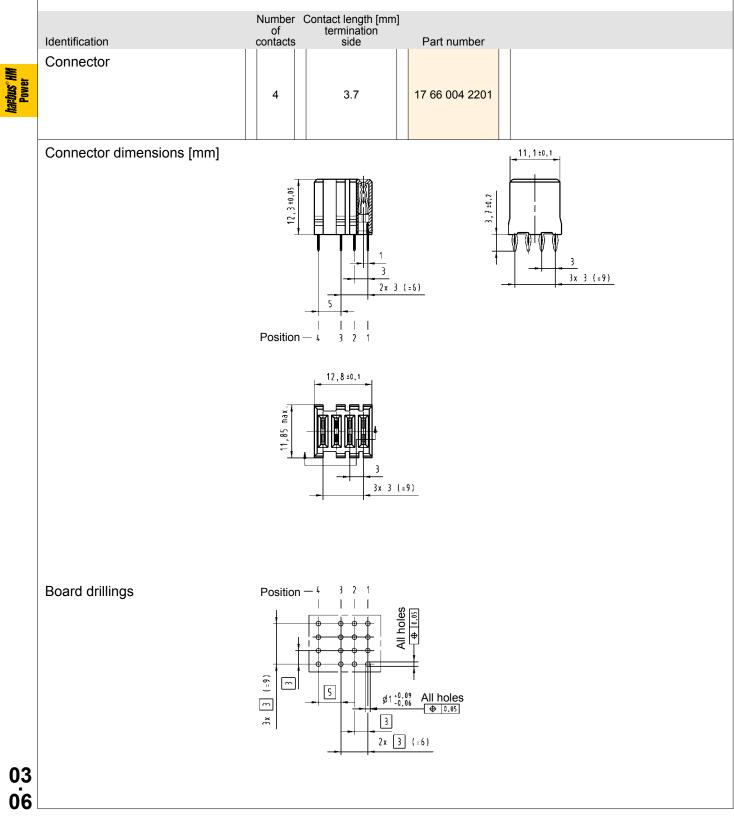
03 04

harbus" HN Power


¹⁾ Non-metallized drillings ²⁾ Type XL on request Tooling see chapter 15

harbus® HM Power

Male connectors angled, with solder (SMC) termination


¹⁾ Non-metallized drillings

²⁾ Type XL on request

harbus® HM Power

Female connector straight, with press-in termination

Micro Card Edge connector	Directory chapter 05	HARTING	
Micro Card Edge connector, 0.8 mm pitch		Page	
General information and features		05.02	
Technical characteristics, board dimensions		05.03	
40pin connector		05.04	
100pin connector		05.05	MCE
			05 01

Micro Card Edge connector

General information

HARTING offers the new Micro Card Edge connector in surface mount technology for PCBs with the thickness of 1.6 mm. The new connector is suitable for board-to-board mezzanine as well as for small "pluggable daughter card" applications. The key feature of the new connector in mezzanine applications is the achievement of flex-ible staple heights of parallel boards.

The HARTING Micro Card Edge connector allows data transfer rates up to 14Gbps and is suitable for highspeed applications in the telecom, medical and industrial markets. The connector is available with 40 or 100 contacts in 0.8 mm pitch.

An extremely smooth contact surface achieved by the usage of high performance stamping tools and a special surface finish ensures low insertion forces and a high contact reliability.

HARTING's Micro Card Edge connector offers excellent features for high volume manufacturing like tape-andreel packaging and a pad for nozzle in high volume productions.

Regel 22 100 1000 reliant / une 2000

Features

- High speed data transmission between mezzanine or daughter card boards in telecom, medical, datacom and industrial applications.
- The key feature for mezzanine application is that the distance between parallel boards is flexible by utilizing a small board between the connectors. This gives flexibility in the mechanical design of the system.
- SMT termination gives good signal integrity characteristics for the card edge connector.

05 02

Micro Card Edge connector

Technical characteristics

Contact spacing	: 0.8 mm	
Working current Test voltage	: 1.7 A at 80 °C ambient : 600 V AC	
Mating cycles	: 200	
Number of contacts	: 40, 100	
Mating card thickness	: 1.6 + 0.1 mm	
Operating temperature Max processing temperature	: -55 °C up to +125 °C : 230 °C for 60 sec. or 260 °C for 20 sec.	
ROHS-compliance	: yes	
Materials		
Mouldings	: LCP, glass-fibre filled, UL 94-V0	MCE
Contacts	: Copper alloy with Ni plating	
Contact surface Contact zone Termination zone	: Pd/Ni plating with Au flash : Sn/Ni plating	
	n. 20 mm ax. ∞	
40pin $\underbrace{\mathbb{B}}_{(1,025)} \underbrace{\mathbb{B}}_{(1,025)} \mathbb$	100pin (1,025) (1	0 <u>5</u> 03

Micro Card Edge connector

40pin connector

	Identification	Number of contacts	Part number	Drawing	Dimensions in mm
	Micro Card Edge connector 2800 pieces in a "Tape and Reel" packaging (14 reels with 200 pcs.) 200 pieces in a "Tape and Reel" packaging	40	15 01 040 4601 040 15 01 040 4601 042	20, 6 ±9, 1 20, 6 ±9, 1 20, 6 ±9, 1 20, 6 ±9, 1 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4, 4	
MCE	Single connector sample	40	15 01 040 4601 333	position -2 +0 +0 +0 +0 +0 +0 +0 +0 +0 +0	pick & place pad, self-adhesive
	Board layout			$pin 2$ $pin 2$ $pin 40$ $pin 40$ $pin 39$ $pin 1$ $0.5 tal.t6$ $\frac{40x}{\Phi 10.55}$ $\frac{2x}{\Phi 10.55}$ $\frac{2x}{\Phi 10.55}$ $\frac{2x}{\Phi 10.55}$ $\frac{2x}{\Phi 10.55}$	
	"Tape and Reel" packaging			20 empty pockets 200 pockets with components (480mm) (480mm) trailer	20 empty pockets (480mm) position 1 leader
05 04	Reel dimensions			6.(aptr. 0.130m)	ppr. Ø 380 mm)

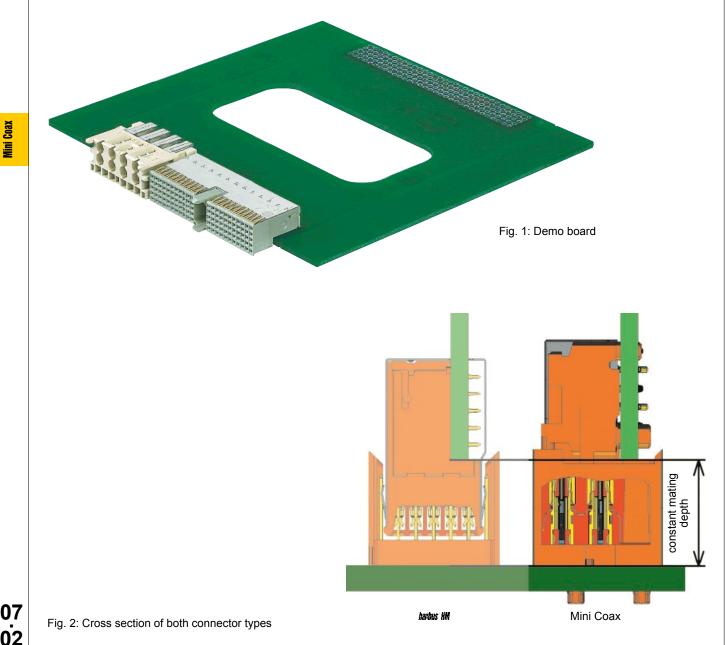
Downloaded from Arrow.com.

100pin connector

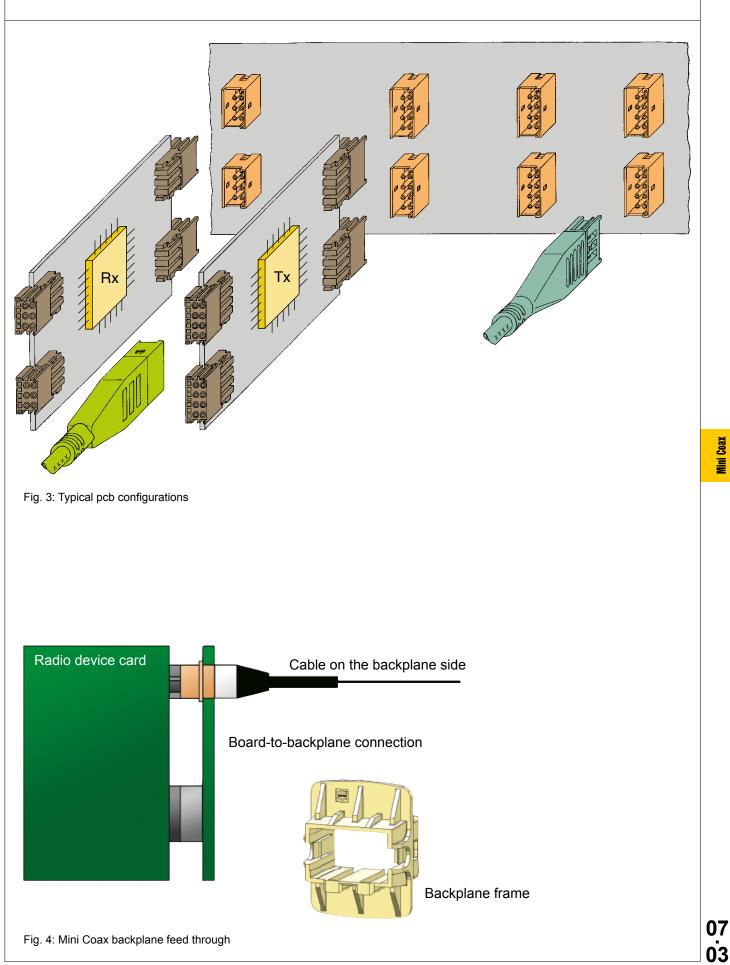
Identification	Number of contacts	Bert number	Drawing	Dimensions in mm
Micro Card Edge connector 1800 pieces in a "Tape and Reel" packaging (9 reels with 200 pcs.) 200 pieces in a	100	15 02 100 4601 040	X 47,8±4,1 X 45,4 45,4 45,4 45,4	X (5:1)
"Tape and Reel" packaging	100	15 02 100 4601 042	$\frac{0.8}{2} \xrightarrow{26x \ 0.6 \ (=20.8)}_{2} \xrightarrow{4} \xrightarrow{22x \ 0.8 \ (=17,6)}_{-} position$	
Single connector sample	100	15 02 100 4601 333	22x (0.8) (±17.10	self-adhesive
Board layout			pin 2 $pin 2$ $pin 100$ $pin 100$ $pin 100$ $pin 100$ $pin 100$ $pin 99$ $pin 100$ $pin 99$	
"Tape and Reel" packaging			20 empty pockets 200 pockets with components (480mm) trailer	20 empty pockets (480mm) position 1
Reel dimensions			e, (abbr. 0, 13m, 12m, 12m, 12m, 12m, 12m, 12m, 12m, 12	05 0505

Г		te																						HAR	
•				 											 								-		_
															 										-
														 								•			
				 						 		 		 	 						-				
L			-	 			 	 		 	 		 	 	 	 	 	 							
L				 	 		 	 		 -				 	 			 							
-	 			 						 				 	 			 							
-		-		 	 -		 	 		 		 	 	 	 		 	 		-					
		+												 	 								-		
								6																	
	 			 			 	 		 				 	 			 <u> </u>							
	 			 			 				 			 			 	 					-		
						_					 			 	 										
	 			 			 	 		 		 		 	 		 				-				
		-			 									 	 			 <u> </u>			<u> </u>	<u> </u>			
-					 									 	 			 					-		
		1												 	 										-
															 							<u> </u>			
	 		Ì					 						 	 		 								
ļ	 			 	 		 			 				 	 		 							ļ	_
					 					 				 	 			<u> </u>					<u> </u>		
	 			 	 		 	 		 	 	 	 	 	 	 	 0	 		-					

Directory chapter 07


HARTING

Mini Coax modules (press-in)	Page
Mini Coax connector system – general information	07.02
Technical characteristics	07.04
Straight Mini Coax Standard modules for backplane assembly	07.06
Angled Mini Coax Standard modules for daughtercard assembly	07.07
Angled Mini Coax single-row modules for daughtercard assembly	07.08
Mini Coax tooling see chapter 15	
5 <u>,</u>	


The Mini Coax connector is a multi line RF connector for blind mating of board-to-board, boardto-cable or cable-to-cable applications. The Mini Coax connector is mainly used in both RF (Radio Frequency) and IF (Intermediate Frequency) signal transmission and is specified for a frequency range from DC to 2.5 GHz and beyond. Thanks to its compact size (a 10 coaxial contacts' connector is as small as a PC's enter key) and excellent crosstalk features, this connector system is ideal for high end equipment within cellular telecom infrastructure.

The isolated coaxial lines are implemented in a plastic housing that defines the module size in a metric scale from 1.00, 1.25 and 1.50 SU (SU = System Unit = 25 mm). The Mini Coax connectors are available as straight sockets and right angled plugs. Both types are executed in press-in technology for the PCB (Printed Circuit Board) termination. The straight modules are delivered with an inserted plastic cap that protects the coaxial contacts against dust and dirt, as well as being used as an upper press-in tool. In this way, an easy and safe flat rock process is guaranteed.

The contacts of the Mini Coax single-row connector are single line, as opposed to the standard connector. This delivers enhanced performance, especially in terms of isolation, and is also suitable for slim cabinet applications.

General information

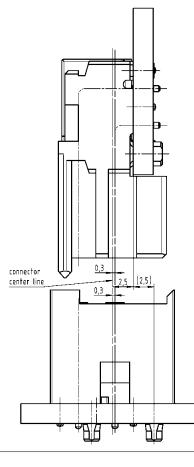
Mini Coax		Technica	I <mark>l character</mark> i	istics	HARTIN
Number of contacts	:	1, 2, 4, 6, 8 or 10			
Grid pattern	:	4.40 x 6.25 mm (8.80 mm for Mini			
Dielectric withstanding Voltage U _{r.m.s.}	:	≤ 1000 V (for 60 s	e)		
DC-contact resistance			5)		
Centre contact	:	≤ 12 mΩ			
Ground contact	:	≤ 6 mΩ			
Insulation resistance	:	≥ 5000 MΩ			
Power	:	≤ 40 W (at 2.5 GI	Hz)		
Frequency range	:	DC 2.5 GHz			
Nominal impedance	:	50 Ω			
Return loss	:	< - 20 dB			
VSWR	:	< 1.22			
Insertion loss	:	< 0.25 dB			
Near end crosstalk (NEXT)	:	Pin distance	Board-to-Board	Board-to-Cable	Cable-to-Cable
		▲ x = 4.40 mm	50 dB	60 dB	90 dB
		▲ x = 6.25 mm	60 dB	70 dB	90 dB
		▲ x = 7.64 mm	75 dB	80 dB	90 dB
		▲ x = 8.80 mm	-	75 dB	-
		▲ x = 12.50 mm	90 dB	90 dB	90 dB
				8,8	
		00 00	00		-
	4,40		18 ⁴ P .		++++++++++++++++++++++++++++++++++++++
	4	<u></u>	0 .		* * * * * * *
	ſ	0000	0 0		
			\bigcirc		
		<mark>< 6,25</mark> ►			
		Fig. 5: Grid pattern		Fig. 6: Grid patt	
		Mini Coax Sta	ndard		x single-row
Temperature range	:	– 55 °C + 125	°C		
Moulding material	:	Liquid Cristal Pol	ymer (LCP), UL 9	94-V0	
Contact surface	-	A			
Contact zone Termination area	:	Au			
Centre pin	:	Au			
Ground pin		Ni			

07 04

Technical characteristics

Mating cycles Recommended configuration of plated through holes

max. 500


:

:

Tin plated	Hole-Ø	1.15 ^{±0.025} mm				
PCB (HAL)	Cu	min. 25 µm				
acc. EN 60352-5	Sn	max. 15 µm				
	Plated hole-Ø	0.94-1.09 mm				
Chemical	Hole-Ø	1.15 ^{±0.025} mm				
tin plated PCB	Cu	min. 25 µm				
	Sn	min. 0.8 µm				
	Plated hole-Ø	1.00-1.10 mm				
Au / Ni plated PCB	Hole-Ø	1.15 ^{±0.025} mm				
	Cu	min. 25 µm				
	Ni	3-7 µm				
	Au	0.05-0.12 µm				
	Plated hole-Ø	1.00-1.10 mm				
Silver plated PCB	Hole-Ø	1.15 ^{±0.025} mm				
	Cu	min. 25 µm				
	Ag	0.1-0.3 µm				
	Plated hole-Ø	1.00-1.10 mm				
OSP	Hole-Ø	1.15 ^{±0.025} mm				
copper plated PCB	Cu	min. 25 µm				
	Plated hole-Ø	1.00-1.10 mm				

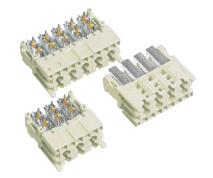
PCB board thickness: ≥ 1.6 mm

Mating force	:	≤ 10 N/contact
Withdrawal force	:	> 1 N/contact
Mating distance	:	12.5 15 mm
Wiping length	:	2.5 mm
Acceptable radial mating offset	:	max. ± 1.5 mm

Mini Coax

Standard

HARTING



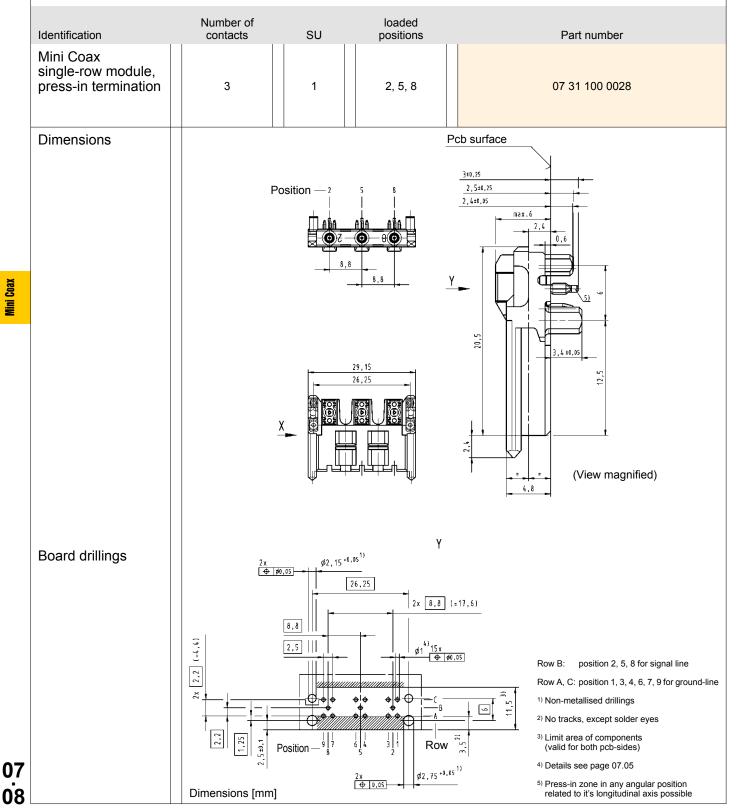
Straight modules

Number of contacts S	SU I	loaded positions		Part number		
	25 2, 2, 2,	5, 8, 11 5, 8		07 11 100 002 07 11 100 002 07 11 900 002	4 3 4	
	>	a				
				2,5-0,05	2, 7 ±0.15 3, 05 ±0, 25	
	6,25	6,25 6,25 6,25			<u>4,4</u> 7,5±0,05	
			 View with pro 	tection-cap		
		1			a b	nm] C
2 x	ø2,15 ^{+0,0}	,ոյ X –		1.25 SU 31.	05 26.25	25 18.75 12.5
onnector / ⊕ Ø.05	\$1 ²		2.5 8: 6,25 7: x x	for Row A, C, E: po	signal line sition 1, 3, 4, 6, 3 10, 12, 13,	
imensions [mm]	+ 	b			Ū.	
	contacts S 10 1. 8 1. 6 1 4 1 2 1 1 $\frac{2x}{\cancel{0},05}$ Row $\frac{2x}{\cancel{0},05}$ onnector $(\bigcirc [0,05])$	contacts SU 10 10 1.50 2, 6 1 2, 6 1 2, 6 1 2, 4 1 2 1 1 1 1 1 1 1 1 1 1 1 1 1	contacts SU positions 10 1.50 2, 5, 8, 11, 14 8 1.25 2, 5, 8 4 2 1 2 7 K k k k k k k k k	contacts SU positions 10 1.50 2, 5, 8, 11, 14 8 1, 25 2, 5, 8, 11 6 1 2, 5, 8 4 1 2, 8 2 1 2 X a $\frac{1}{2}$ $\frac{1}{1}$ 2, 1 $\frac{1}{1}$ $\frac{1}{2}$ $\frac{1}{1}$	contacts SU positions Part number 10 1.50 2, 5, 8, 11, 14 07 11 100 002 6 1.25 2, 5, 8, 11 07 11 100 002 4 1 2, 5, 8 07 11 100 002 2 1 2 2, 8 07 11 900 002 2 1 2 2 07 11 900 002 2 1 2 07 11 900 002 07 11 900 002 2 1 2 07 11 900 002 07 11 900 002 4 1 2, 5, 8 07 11 900 002 07 11 900 002 1 2 1 2 07 11 900 002 07 11 900 002 1 1 1 5 2 Position 9 1 1 1 5 2 Position 9 1 1 1 5 2 Position 100 SU 24 1 1 1 1 1 1 1 1 1 1 1 <t< td=""><td>contacts SU positions Part number 10 1.50 2.5, 8, 11, 14 07 11 100 0026 8 1.25 2.5, 8, 11, 14 07 11 100 0024 9 12 1 2 07 11 100 0023 4 1 2, 8 07 11 100 0023 1 2 07 11 900 0023 1 2 07 11 900 0023 1 9 0 00023 1 9 0 00023 1 9 0 0002 1 9 0 0002 1 9 0 0002 1 9 0 0002 1 1 9 0 0023 1 9 0 0002 1 1 9 0 0023 1 9 0 0023 1 1 9 0 0024 1 1 9 0 0023 1 1 9 0 0024 1 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0024 1 1 1 9 0 0023 1 1 9 0 0024 1 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0024 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1</td></t<>	contacts SU positions Part number 10 1.50 2.5, 8, 11, 14 07 11 100 0026 8 1.25 2.5, 8, 11, 14 07 11 100 0024 9 12 1 2 07 11 100 0023 4 1 2, 8 07 11 100 0023 1 2 07 11 900 0023 1 2 07 11 900 0023 1 9 0 00023 1 9 0 00023 1 9 0 0002 1 9 0 0002 1 9 0 0002 1 9 0 0002 1 1 9 0 0023 1 9 0 0002 1 1 9 0 0023 1 9 0 0023 1 1 9 0 0024 1 1 9 0 0023 1 1 9 0 0024 1 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0024 1 1 1 9 0 0023 1 1 9 0 0024 1 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0023 1 1 9 0 0024 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1

07 06

Standard

Angled modules



Mini Coax

single-row

Angled modules

Mini Coax Directory chapter 08	HARTING
Mini Coax cable assemblies and accessories	Page
Mini Coax cable assemblies – general information	08.02
Assemblies with standard modules	08.04
Assemblies with single-row modules and with heavy duty hoods/housings	08.06
Accessories	08.07

Mini Coax Cables

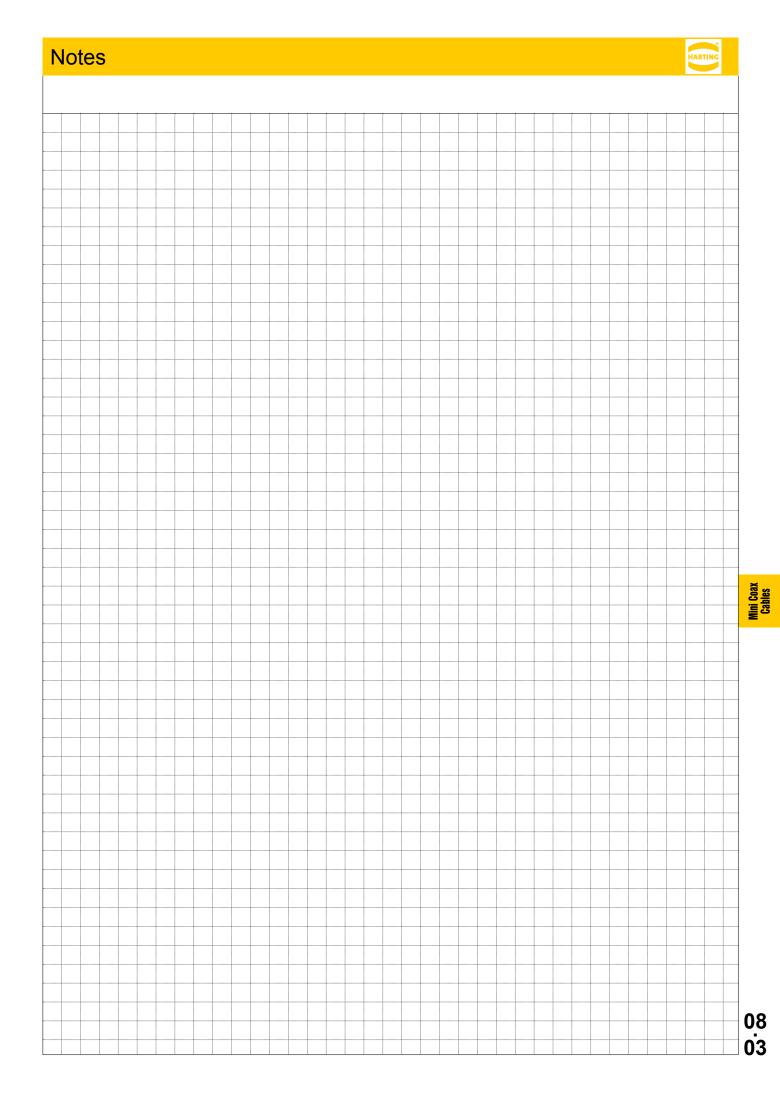
General information

HARTIN

The Mini Coax product range also includes various cable assemblies and accessories, which provide customers with flexible application options.

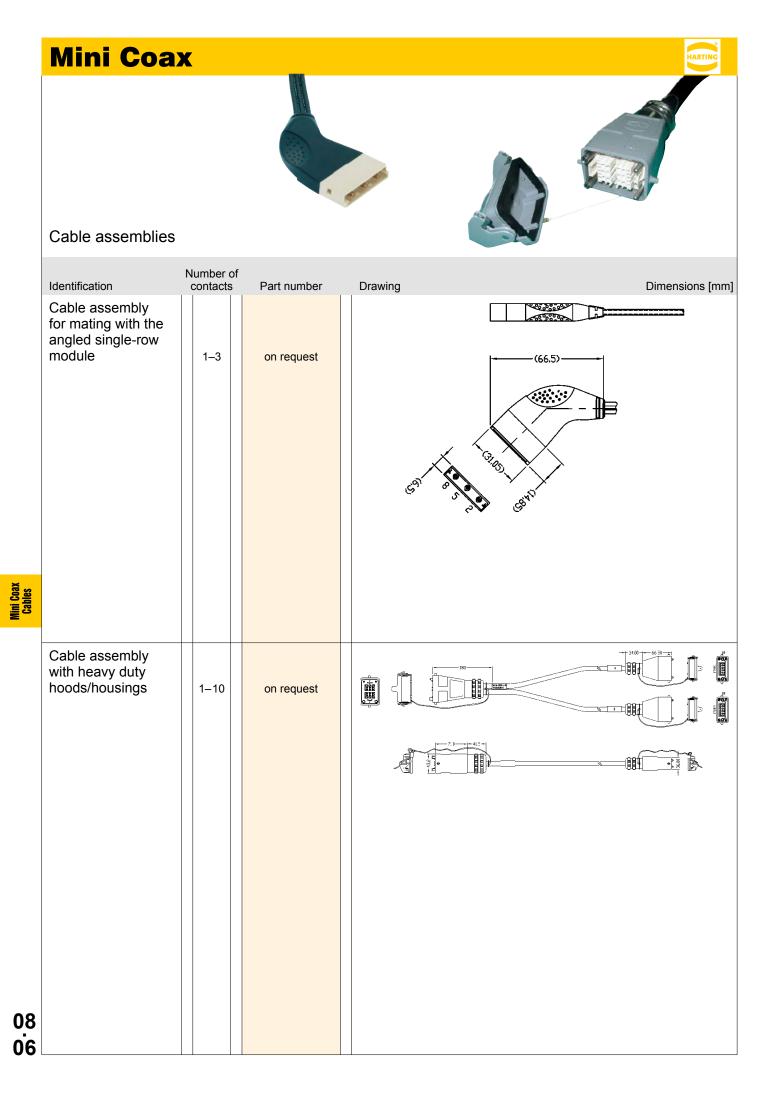
The Mini Coax cable connector is available as plug and socket and is crimped to a coaxial cable that can be individually assembled with RF-cable connectors (SMA, SMB, N-type ...). While delivering high RF transmission performance, the moulded Mini Coax cable assemblies provide robust connections. The various angle mould types meet different cable routing requirements according to the available space.

Thanks to various accessories, such as backplane frame, Han[®] housing insert and press-in cable housing ..., customized connecting requirements can be met.


Remark:

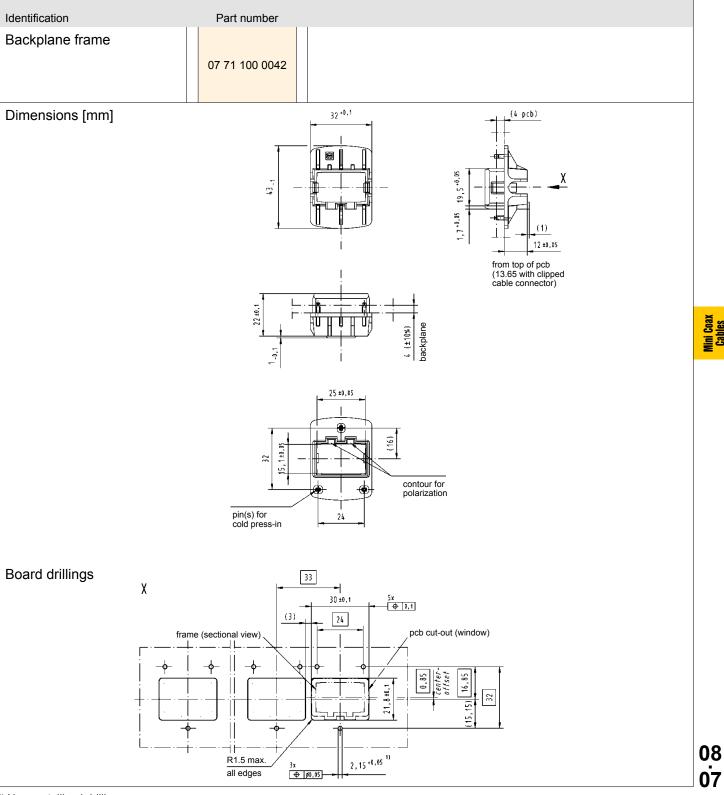
The cable assemblies and accessories shown are part of the overall product range.

Additional, customized parts are available on request.



Mini Coax 20 Cable assemblies Number of Identification contacts Part number Drawing Dimensions [mm] Cable assembly for mating with the angled standard module 1–10 on request Cox 2 (PRO) `CF.BS ₹ (67.4) Mini Coax Cables

08 04


Mini Coax			
Cable assemblies		ALLA!	J. C.
Identification	Part number	Drawing	Dimensions [mm]
Cable assembly Mini Coax, 6 position female connector (straight) to SMA crimp connector Hood: overmoulded with top entry Wiring: 1:1		SPRK HOISING FDM.LE OVERMALDING CAILE	(12) RUE (RUE
Length: L = 0.5 m L = 1.5 m L = 2.0 m	33 07 233 0500 109 33 07 233 1500 110 33 07 233 2000 111		
Cable assembly Mini Coax, 6 pole male Cable: Mini Coax cable Hood: overmoulded with top entry Wiring: 1:1			
Length: L = 0.5 m L = 1.5 m L = 2.0 m	33 07 223 0500 112 33 07 223 1500 113 33 07 223 2000 114		

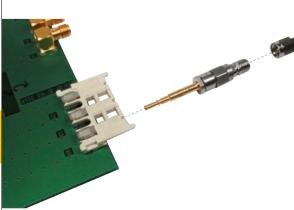
Mini Coax Cables

Accessories

¹⁾ Non-metallized drillings

HARTING

Accessories

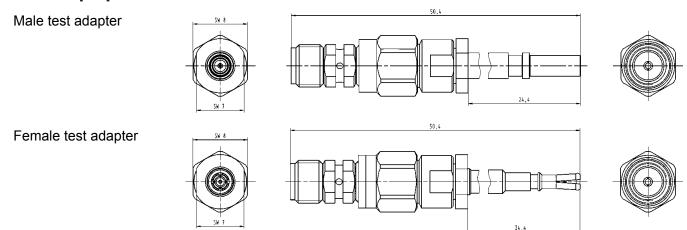

Ident	tifica	tion

Part number

Test adapter SMA – Mini Coax	
male for straight modules	07 73 000 0394
female for angled modules	07 73 000 0393

General information

The Mini Coax-to-SMA Adapter can be directly connected to measurement instrument cables. This allows the precise RF transmission characterization of module cards, backplanes and cable assemblies.


Electrical	characteristics

Mini Coax test adapter	Impedance values @ 31.5 ps rise time at reference plane (10% - 90%):		Max. impedance deviation [Ω]	
	Max. [Ω] Min. [Ω]			
SMA to male	52.5	47.5	1.5	
SMA to female	53.5	48.0 40.5*	1.0	

Connector	Electrical length [ps]
Mated SMA to male / female adapter	262.2

Frequency [GHz]	Return loss [dB] mated adapter pairs	Insertion loss [dB] mated adapter pairs
< 1	- 26.9	- 0.17
< 2	- 22.5	- 0.24
< 3	- 19.9	- 0.26
< 4	- 16.4	- 0.34
< 5	- 14.4	- 0.42

*: Impedance drop is due to the female Mini Coax connector design.

Features:

- SMA connector directly attached to the Mini Coax
- Impedance deviations between adapters < 1.5 Ω
- Good reproducibility of test results
- Test results between different labs are comparable
- Precise measurements of Mini Coax connector system

Dimensions [mm]

harlink ®	Directory chapter 11		HARTING
arlink [®] Modular metric high	h speed connectors	P	age
arlink ® connector system – g	general information	11	1.02
echnical characteristics		11	1.03
lale and female connectors	S	11	1.04
Accessories and cable asse	emblies	11	1.05

harlink°

har in the connector system

General information

The **harlink**[®] connector system of HARTING complies with the requirements of IEC 61076-4-107 and is a compact and robust pcb-to-cable interface with excellent data transmission properties for high-speed networking and telecommunications.

All dimensions of the **harlink**[®] connector are in accordance with IEC 917 and IEEE P 1301 requirements, which allows for easy implementation into both metric and inch-based systems. In addition, **harlink**[®] supports hot plugging as required by modern bus systems such as CompactPCI, S-bus and VME.

harlink[®] allows data transmission up to 2 Gbit/s per pair and is therefore perfectly suited for modern transmission protocols such as Low Voltage Differential Signals (see Fig. 1). The design of the **harlink**[®] connector allows differential pairs to be placed horizontally (parallel to the pcb), thus reducing the skew at high frequencies and considering high signal integrity.

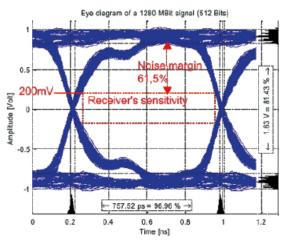
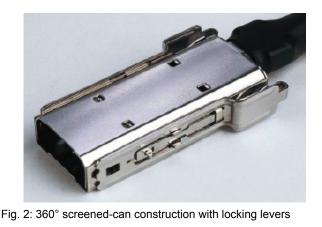



Fig. 1: Eye diagram of a 1280 MBit signal (512 Bits)

The metal shells of the **Marink**[®] connector are a guarantee for its superior performance in the EMI-polluted environment (see Fig. 2).

To reach a screening attenuation of more than 50 dB up to 1 GHz, HARTING offers brackets covering each connector in conjunction with a gasket, which is compressed between the bracket and the front panel (see Fig. 3).

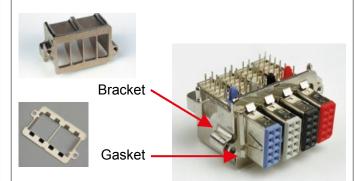


Fig. 3: 4 cavities bracket and gasket

Once plugged, the mated pair shows excellent mating safety. Due to the locking levers on both sides of the male connector, the connection withstands a pulling force of up to 80 N (see Fig. 2).

The high temperature resistant material of the **harlink**[®] female connector body supports the safe reflow soldering process. For easy identification of female modules, six different colours are available (see Fig. 4).

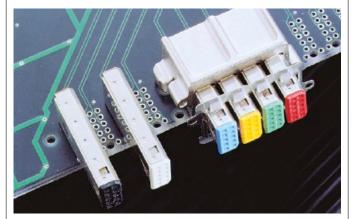


Fig. 4: Female modules

In addition to single connectors, HARTING provides cable assemblies with unshielded twisted pairs or with shielded twisted pairs for high speed applications such as IEEE 1355. A crimping tool range for terminating the male **haring** connectors is available.

har:link[®]

Number of contacts	10	
Approvals	IEC 61 076-4-107 UL recognized: E102079	
Contact pitch Connector pitch	2 mm 6 mm	
Working current	1.5 A at 70 °C	
Test voltage U _{r.m.s.}	750 V	
Contact resistance Insulation resistance	≤ 35 mΩ ≥ 10 ¹⁰ Ω	
Temperature range during reflow soldering	-55 ^o C +125 ^o C female: max. + 260 ^o C for 60 s	the same
Mating cycles	250, performance level 2	and the second
Terminations	Solder buckets (male), AWG 24-30, outer insulation Ø 5.33 ± 0.25 mm Solder pins for Ø 0.6 mm min. (female)	
Insertion force Withdrawal force	10 N max. / module 2 N min. / module (without locking levers)	
Latching system	Locking levers	
Materials Mouldings	Male connector: Polyester, UL 94-V0 Female connector: High temperature plastic material,	
Contacts Shells	UL 94-V0 Copper alloy Male connector: Stainless steel Female connector: Silver nickel	
Contact surface Contact zone	Selectively plated according to performance level	

harlink®

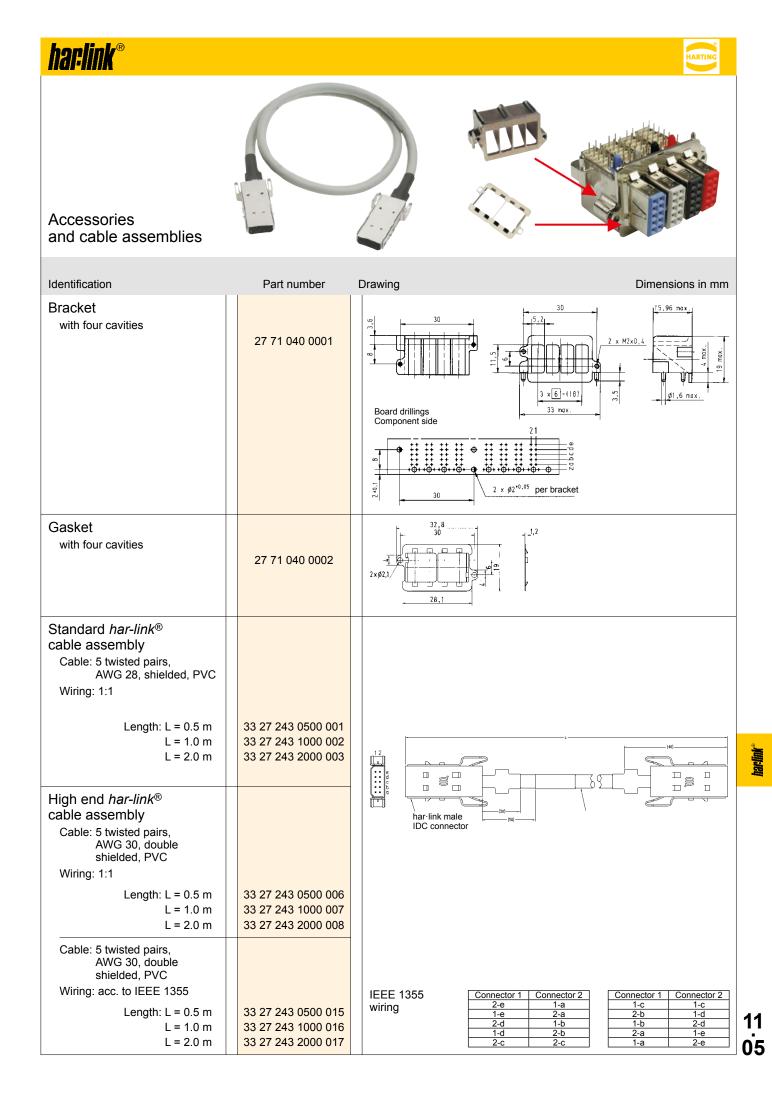
Dimensions [mm]

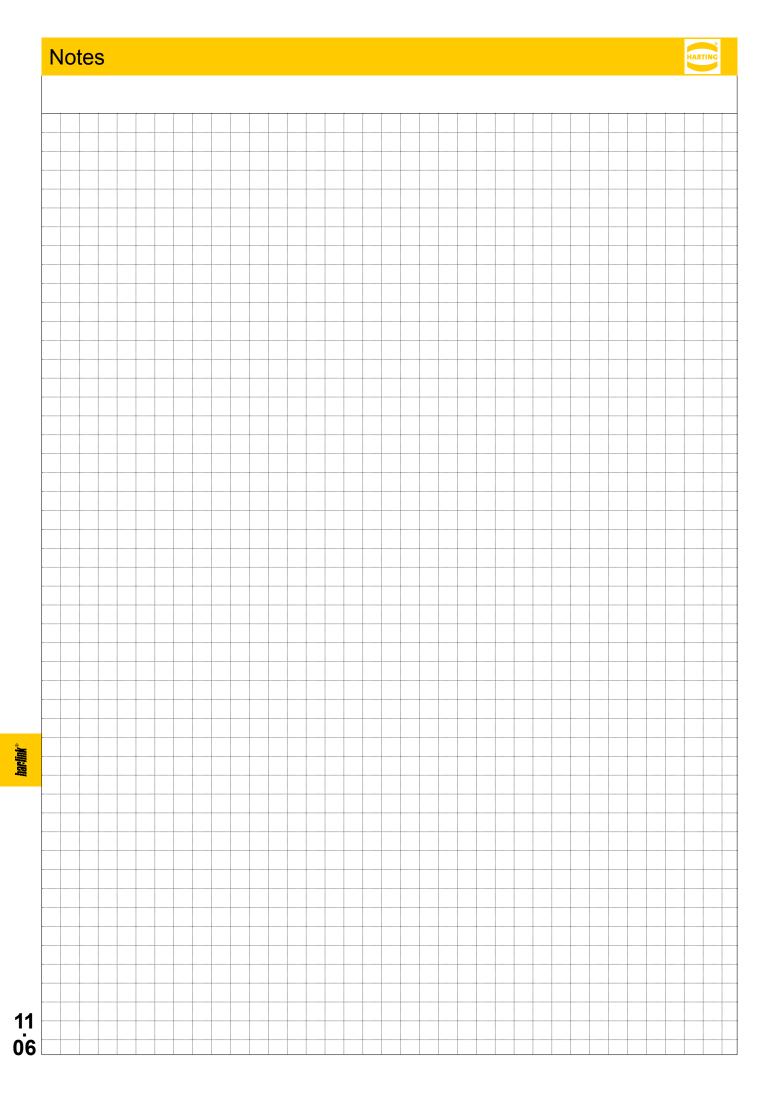
<u>2. mazi</u>.

2 10,1

Male connectors, straight Female connectors, angled

			A DE CONTRACTOR
Male connectors, straight Female connectors, angled			The second s
Identification	No. of contacts	Colour	Part number
Male connector with solder buckets	10	Black	27 11 122 2001
Female connector with solder pins	10	Beige (standard)	27 21 121 8000
	10 10 10	Red Yellow Green	27 21 121 8002 27 21 121 8004 27 21 121 8005
	10 10	Blue Black	27 21 121 8006 27 21 121 8010
Male connector (delivered in piece parts)	available	s for the har-link [®] cable free	(3)
Female connector	date code	↓ ↓ ↓ ↓ ↓ ↓	Shielding pins


28.35 mexi.


Tooling see chapter 20

harlink®

11

. 04

Directory chapter 15	HARTIN
Tooling	Page
harbus" HM	
Discrete tooling system for volume production	15.02
Tooling for backplanes	15.05
Insert blocks for male connectors	15.06
Repair tooling	15.07
<i>harbus[®] HM Power</i>	15.07
Mini Coax	
Discrete tooling system for volume production	15.08
Press-in machines	
Hand bench presses / pneumatic presses	15.09
CPM press-in machine ¹⁾	15.11

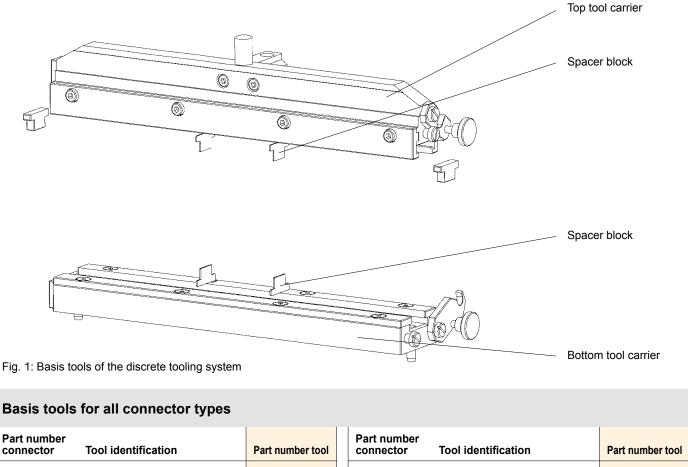
Tooling

15 01

¹⁾ See separate catalogue

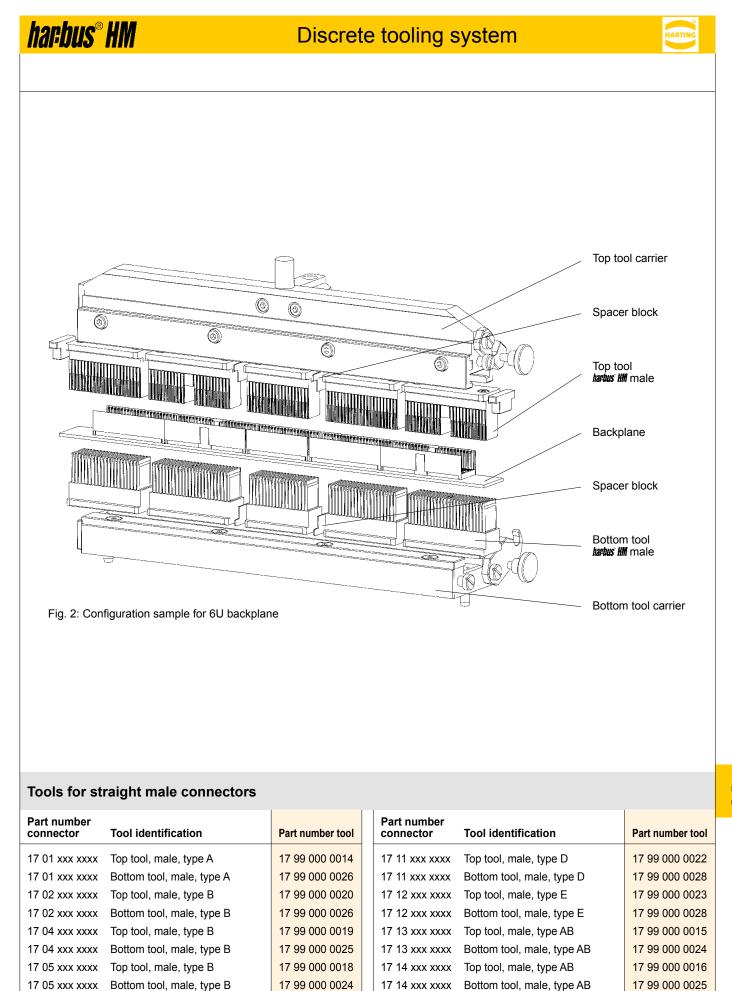
For economical and safe press-in of *harbus* HM connectors with 5+2 and 8+2 rows, HARTING has developed a discrete tooling system.

Due to its modular structure it can be adapted to any connector configuration that needs to be pressed-in extremely quickly and securely.


Therefore a top and a bottom tool for each connector style is available. These tools are inserted in a top or bottom carrier tool with a groove, thus guaranteeing exact position of the top and bottom tools and the connectors.

To use identical carrier tools for all connector configurations, HARTING offer spacer blocks to fill gaps between adjacent top or bottom tools. The carrier tool is either completely filled with top or bottom tools or respective spacer blocks, making it possible to press-in single modules.

To press-in female connectors with pre-installed upper shields, separate top and bottom tools are available.


For lower shield press-in the tooling can be changed easily.

For further information please check our operating instructions or contact your HARTING representative.

	connector	Tool identification	Part number tool	connec	tor	Tool identification	Part number tool
	17 xx xxx xxxx	Top tool carrier	17 99 000 0012	17 xx xx	x xxxx	Spacer block 25 mm	17 99 000 0055
	17 xx xxx xxxx	Bottom tool carrier	17 99 000 0013	17 xx xx	X XXXX	Spacer block 38 mm	17 99 000 0054
	17 xx xxx xxxx	Top tool carrier <i>harbus HM</i> 3U	17 99 000 0073	17 xx xx	X XXXX	Spacer block 44 mm	17 99 000 0053
	17 xx xxx xxxx	Bottom tool carrier <i>harbus</i> HM 3U	17 99 000 0074	17 xx xx	X XXXX	Spacer block 50 mm	17 99 000 0052
5	17 xx xxx xxxx	Spacer block 0.67 mm (CompactPCI)	17 99 000 0057	17 xx xx	X XXXX	Centering plate female left	17 99 000 0060
)2	17 xx xxx xxxx	Spacer block 5 mm	17 99 000 0056	17 xx xx	x xxxx	Centering plate female right	17 99 000 0061

Tooling

17 99 000 0021

17 99 000 0027

17 15 xxx xxxx

17 15 xxx xxxx

Top tool, male, type AB

Bottom tool, male, type AB

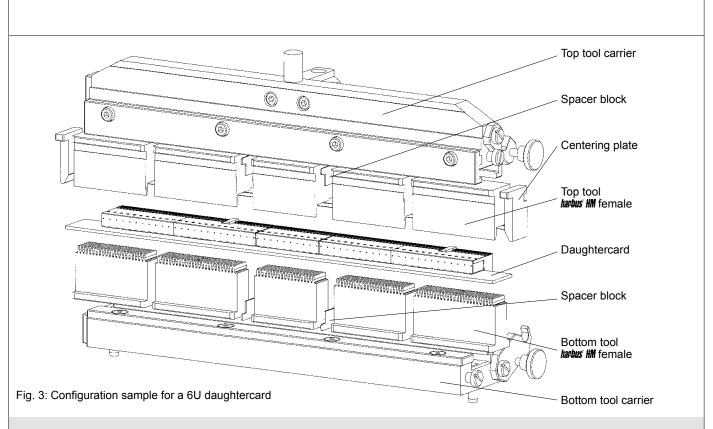
Tooling

03

17 99 000 0017

17 99 000 0026

17 03 xxx xxxx


17 03 xxx xxxx

Top tool, male, type C

Bottom tool, male, type C

harbus® HM

Discrete tooling system

Tools for angled female connectors

Part number connector	Tool identification	Part number tool	Part number connector	Tool identification	Part number tool
17 21 xxx xxxx	Top tool, female, type A	17 99 000 0029	17 31 xxx xxxx	Top tool, female, type D	17 99 000 0042
17 21 xxx xxxx	Bottom tool, female, type A	17 99 000 0046	17 31 xxx xxxx	Bottom tool, female, type D	17 99 000 0048
17 22 xxx xxxx	Top tool, female, type B	17 99 000 0038	17 32 xxx xxxx	Top tool, female, type E	17 99 000 0042
17 22 xxx xxxx	Bottom tool, female, type B	17 99 000 0046	17 32 xxx xxxx	Bottom tool, female, type E	17 99 000 0048
17 24 xxx xxxx	Top tool, female, type B	17 99 000 0036	17 33 xxx xxxx	Top tool, female, type AB	17 99 000 0032
17 24 xxx xxxx	Bottom tool, female, type B	17 99 000 0045	17 33 xxx xxxx	Bottom tool, female, type AB	17 99 000 0044
17 25 xxx xxxx	Top tool, female, type B	17 99 000 0034	17 34 xxx xxxx	Top tool, female, type AB	17 99 000 0058
17 25 xxx xxxx	Bottom tool, female, type B	17 99 000 0044	17 34 xxx xxxx	Bottom tool, female, type AB	17 99 000 0045
17 23 xxx xxxx	Top tool, female, type C	17 99 000 0040	17 35 xxx xxxx	Top tool, female, type AB	17 99 000 0029
17 23 xxx xxxx	Bottom tool, female, type C	17 99 000 0047	17 35 xxx xxxx	Bottom tool, female, type AB	17 99 000 0046

Tools for angled shielded female connectors

	Part number connector	Tool identification	Part number tool	Part number connector	Tool identification	Part number tool
Tooling	17 21 xxx xxxx	Top tool, female, type A upper shield	17 99 000 0030	17 34 xxx xxxx	Top tool, female, type AB upper shield	17 99 000 0059
	17 21 xxx xxxx	Top tool, female, type A divided shield computer telephony	17 99 000 0031	17 35 xxx xxxx	Top tool, female, type AB upper shield	17 99 000 0030
	17 22 xxx xxxx	Top tool, female, type B upper shield	17 99 000 0039	17 21 xxx xxxx	Press-in die lower shield type A	17 99 000 0051
	17 24 xxx xxxx	Top tool, female,	17 99 000 0037	17 22 xxx xxxx	Press-in die lower shield type B	17 99 000 0051
		type B upper shield		17 24 xxx xxxx	Press-in die lower shield type B	17 99 000 0050
	17 25 xxx xxxx	Top tool, female,	17 99 000 0035	17 25 xxx xxxx	Press-in die lower shield type B	17 99 000 0049
	47.00	type B upper shield	47.00.000.0044	17 31 xxx xxxx	Press-in die lower shield type D	17 99 000 0051
	17 23 xxx xxxx Top tool, female, type C upper shield	type C upper shield	17 99 000 0041	17 32 xxx xxxx	Press-in die lower shield type E	17 99 000 0051
	17 31 xxx xxxx	Top tool, female, type D upper shield	17 99 000 0043	17 33 xxx xxxx	Press-in die lower shield type AB	17 99 000 0049
15	17 32 xxx xxxx	Top tool, female, type E upper shield	17 99 000 0043	17 34 xxx xxxx	Press-in die lower shield type AB	17 99 000 0050
04	17 33 xxx xxxx	Top tool, female, type AB upper shield	17 99 000 0033	17 35 xxx xxxx	Press-in die lower shield type AB	17 99 000 0051

har:bus® HM

For 6U backplanes with CompactPCI configuration, HARTING has developed this start-up tooling.

The basis is a top tool carrier with tooth inserts, that are engaged alternately.

Therefore this tooling assembly can be used without any additional set-up time.

The tooth inserts are interchangeable, so that the tooling can be used for other connector configurations as well as for CompactPCI.

The bottom tool should preferably be a loadnest, which carries and aligns the pcb.

For detailed information please contact your local HARTING representative.

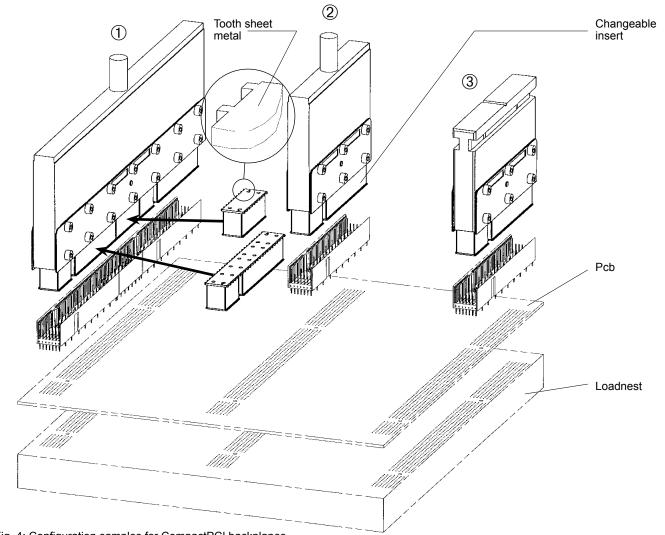


Fig. 4: Configuration samples for CompactPCI backplanes

Tools for straight male connectors

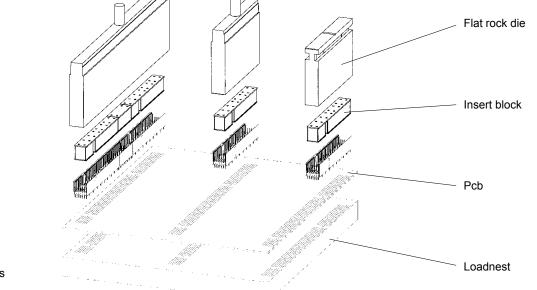
Tool identification	Part number tool	Tool identification	Part number tool
① Insert top tool for 6U CompactPCI	17 99 000 0063	Tooth insert	17 99 000 0066
② Insert top tool for 3U CompactPCI	17 99 000 0065	for type Monoblock 47	
③ Insert top tool for rotatable tool changer	on request	Tooth insert for type B 19 positions	17 99 000 0068

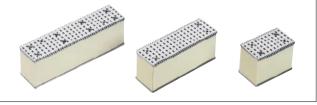
Tooling

The insert blocks can be used to press-in *harbus*"*HM* male connectors without any special top tool. These blocks will be put into the connectors manually or automatically (using insertion removal station, see page 15.13).

To press-in the connector no precise position is needed and can be done by a simple flat rock die. This will accelerate the cycle time of the press-in process dramatically.

Insert blocks are developed for use with a loadnest.

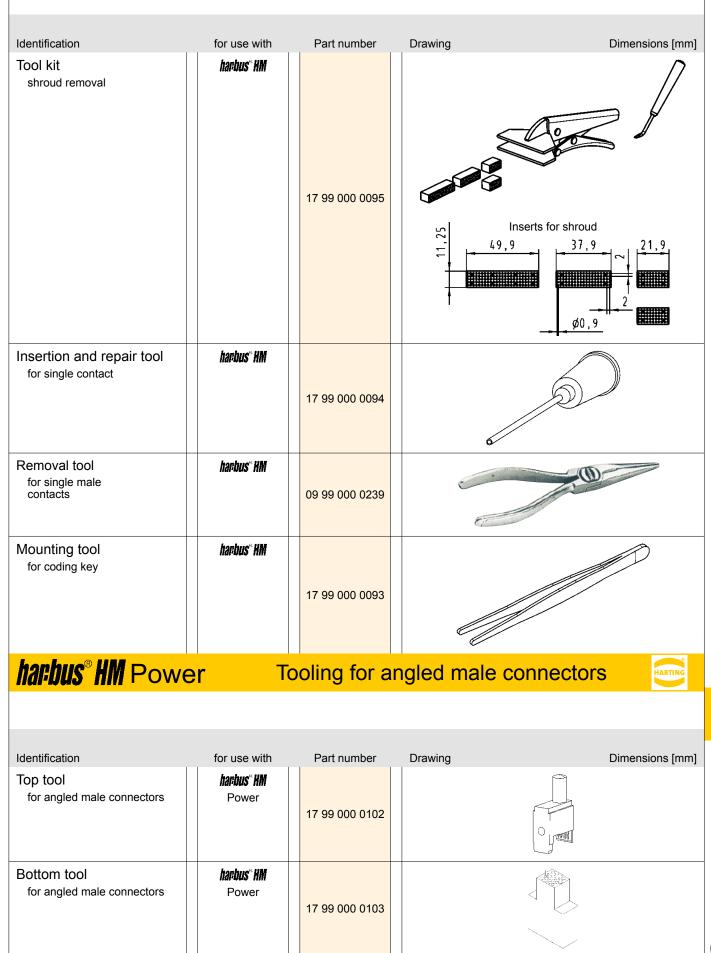



Fig. 5: Application samples for insert blocks

Insert blocks for straight male connectors

ype A	=
	1 x 17 99 000 0009 or (2 x 17 99 000 0001)
ype B	1 x 17 99 000 0004
ype B	1 x 17 99 000 0002
ype B	1 x 17 99 000 0003
ype C	1 x 17 99 000 0001
ype Monoblock 47	1 x 17 99 000 0008 or (1 x 17 99 000 0001 and 1 x 17 99 000 0005)
ype D	2 x 17 99 000 0006
ype E	1 x 17 99 000 0007
ype AB	1 x 17 99 000 0069
ype AB	1 x 17 99 000 0070
ype AB	1 x 17 99 000 0071
ype DE	1 x 17 99 000 0072
ype 6-row with 72 contacts	1 x 17 99 000 0090
ype 6-row with 144 contacts	1 x 17 99 000 0091
t t t t t t t t t	type B type B type B type C type C type Monoblock 47 type D type E type AB type AB type AB type DE type 6-row with 144 contacts

Flat rock dies


Part number connector Tool identification	Part number tool
17 xx xxx xxxx Flat rock die for 6U	07 79 000 0155
17 xx xxx xxxx Flat rock die for 3U	07 79 000 0156

harbus® HM

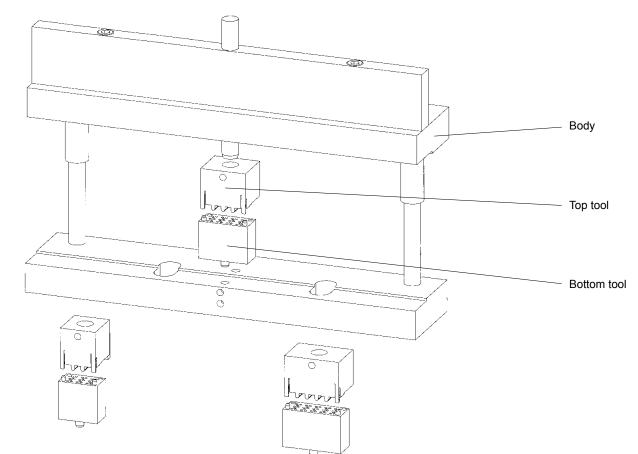
Repair tooling

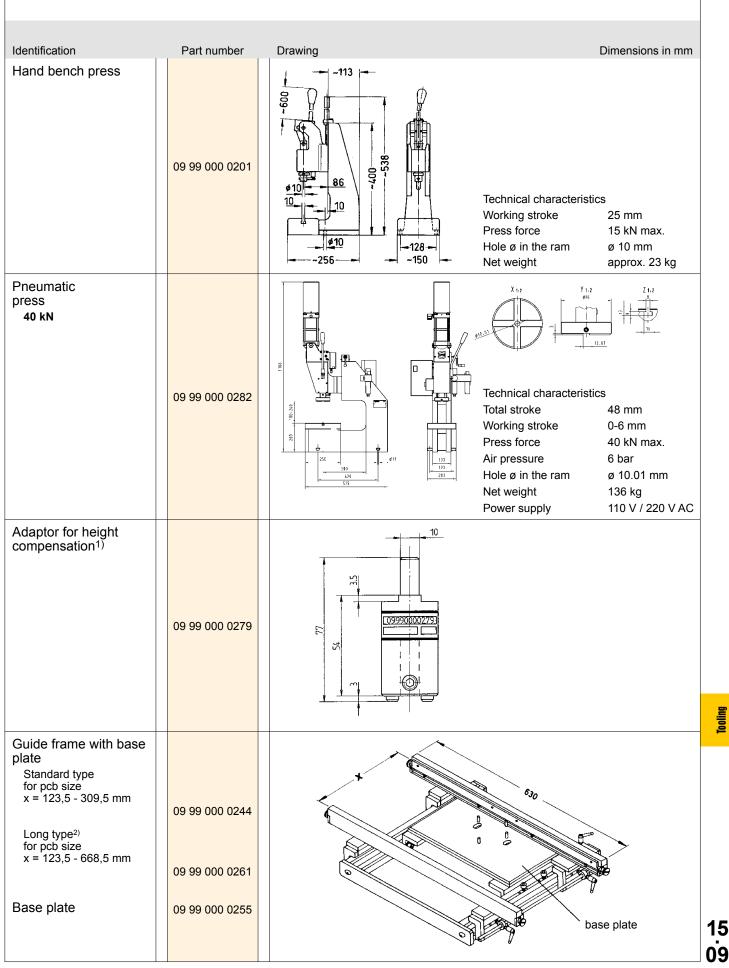
HARTIN

Tooling

Straight Mini Coax connectors can be pressedin with a flat die and a top tool delivered with the connectors. This top tool can be used as contact protection and remains in the connector until the daughtercard is mated.

Angled Mini Coax connectors will be pressed-in with separate top and bottom tools, which will be mounted into a common body.




Fig. 6: Configuration for angled modules

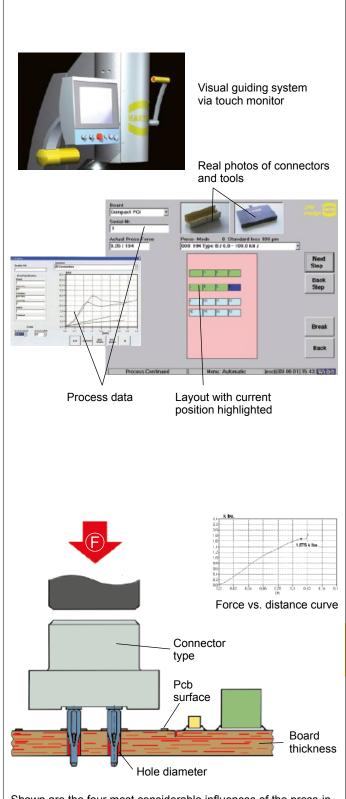
	Tools for straight modules		Tools for angled modules			
	Part number connector	Tool identification	Part number tool	Part number connector	Tool identification	Part number tool
	07 11 xxx xxxx 07 11 xxx xxxx 07 11 xxx xxxx	1 SU Mini Coax Standard bottom tool 1.25 SU Mini Coax Standard bottom tool 1.50 SU Mini Coax Standard bottom tool	on request on request on request	07 31 xxx xxxx 07 31 xxx xxxx	Body 1 SU Mini Coax Standard bottom tool 1 SU Mini Coax Standard top tool 1.25 SU Mini Coax Standard bottom tool 1.25 SU Mini Coax Standard top tool 1.50 SU Mini Coax Standard bottom tool 1.50 SU Mini Coax Standard top tool 1.50 SU Mini Coax Standard top tool 1 SU Mini Coax single-row	07 79 000 0061 07 79 000 0045 07 79 000 0080 07 79 000 0034 07 79 000 0081 07 79 000 0171 07 79 000 0170 07 79 000 0205
5 8				07 31 xxx xxxx	bottom tool 1 SU Mini Coax single-row top tool	07 79 000 0204

Tooling

15 08

Hand bench presses / pneumatic presses

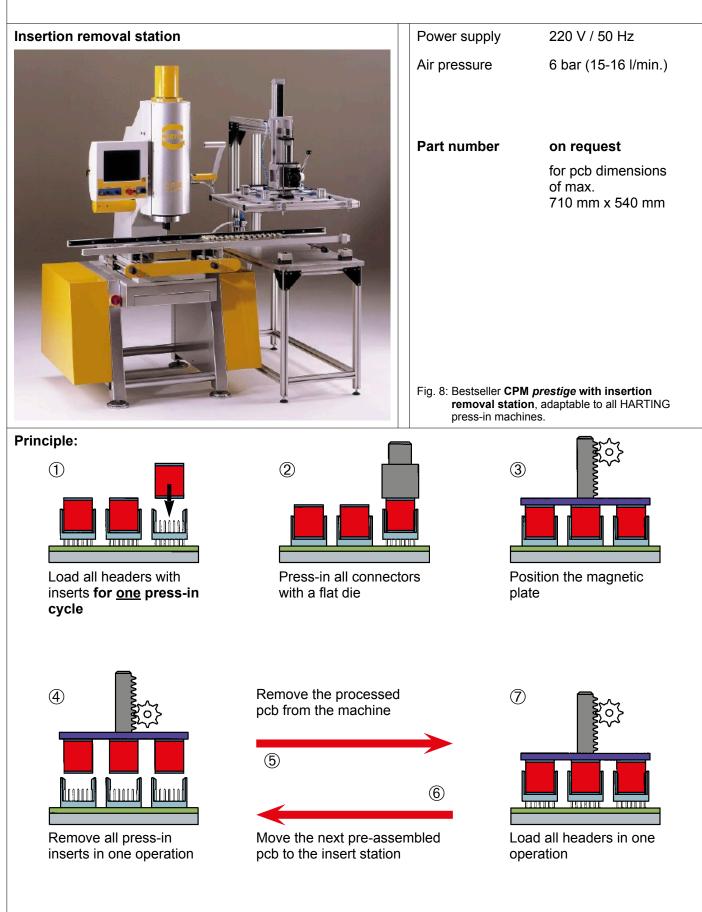
¹⁾ suitable for 09 99 000 0282 and all CPM machines (see page 15.11 pp.) ²⁾ not suitable for hand bench press


Ν	lo	tes	5																	HAT	TIN
		1			Ĩ	[]		 	I		 	 		 		 					
							 	 		 	 			 _	 	 					
														_							
-				 																	
							 			 			l								
				 			 						l						 		
																			 		-
																					-
							 			 											-
														-							
							 	 			 			 		 					-
								 			 			 			-				
							 	 		 	 	 		 	 	 			 		-
																					-
											 			 					 		-
																					-
								 			 	 		 		 					-
				 							 			 	 				 		-
				 			 	 		 	 	 		 			-				
				 			 			 	 	 		 	 	 			 		-
							 				 			 		 		<u> </u>			1
							 					 		 	 		-				
				 			 	 		 	 	 		 	 	 	-		 		
		ļ		 			 	 		 	 			 	 	 			 		
		ļ		 			 	 		 	 	 		 	 	 			 		
														_							

The **CPM** *prestige* press-in machine with a graphical user interface

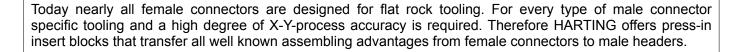
The **CPM** prestige consequential is а development of the successful CPM 2001 press-in machines. The excellent design, supported by a wide range of tools presents a convenient, easy and comfortable way of processing backplanes and daughtercards. The machine is fully programmable and is supplied with a graphical user interface for control and visualisation of the complete process. The use of a microprocessor control allows the recognition and storage of different component heights, so that the pressing-in of different components is initiated simultaneously with only one button. The user-friendly touch-screen guides the user through the menu-orientated process controls.

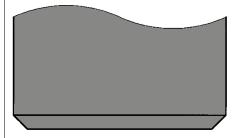
The visualisation of the entire press-in process (the position of the connector, press-in forces etc.) allows the rapid recognition and eradication of the possible error sources. With the addition of a barcode reader (1D and 2D)¹) the parameters of every pcb layout can be stored, recalled and loaded into the automated press-in programme. The extensive operation monitor functions simplify the service and support of the machine.

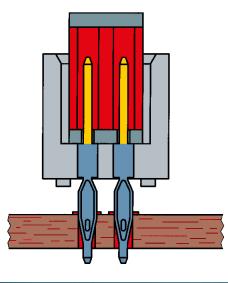

The machine employs the automatic switchoff system "autosense", known worldwide for its reliability. The different connector types and the tolerances of the pcb are automatically recognised and taken into consideration at the press-in operation, thus maximising the process security.

Shown are the four most considerable influences of the press-in process.

1) optional


	PCB-Specifications Policid grav HH-Test	Gatanac Histing	Quality control of pre	ss-in termination
	Drier No: Connect:	Initial Control Image: Control of Con	of the plated through coefficient of the surface; a continuous monitoring The retention force, as	rrelates with the diameter hole and with the friction ; therefore it can be used for of the process. s an indirect measure of es to qualify the process or
	CPM prestige		Part number	09 89 040 0000
			Technical characteristics	
		7	Drive	electro-mechanical, servo
			Press-in force	100 kN
		Company and a second	max. pcb dimensions Floor space	600 x 1000 mm 1200 x 1150 mm
		THE REAL PROPERTY OF	Weight	980 kg
			Power supply Consumption	208 / 380 / 400 / 415 V < 1 kW
			Colour Fig. 7: CPM prestige (incl. PC, control softwa touch screen)	on request re, barcode reader, keyboard,
	Built-in features:	• Guiding rails (carbon/spri	č , , , , , , , , , , , , , , , , , , ,	e i
<u>bu</u>		 Touch-screen and Industr Barcode reader for management 	· · ·	
Tooling		• All dimensions allow an e		•
	Process monitoring and quality assurance:	 Touch screen interface functions 	with graphical and verba	al menus for all machine
		 Autosense: automated pre Storage and validation of 	•	ect press-in forces a quality assurance software
		(press-in force tolerancesContinuous high-precisio	;)	ding of press-in forces and
		distancesRemote determination ofHigh flexibility through a r		
15	Options:	 Rotatable tool changer 		
12		 Insertion removal station 		
• 4				




The insertion removal station has been developed both for the **CPM** *prestige* and the CPM 2001/s. It can additionally be used as stand alone equipment.

15

13

Advantages of press inserts

Robust tooling

No lateral force to pcb hole

No abrasion of the contact mating surface by the press tool

HARTING has already developed press-in inserts for all major male connector families on 2.54 mm, 2.5 mm and 2 mm pitches.

Inserts for any other special components can be developed on request.

The additional process for inserting and removing the press-in inserts can be efficiently done with the insertion removal station. This station removes all pressin inserts with a magnetic plate in one operation and inserts them into the next pre-assembled pcb with the necessary precision. (Principle see page 15.13).

The cycle time for loading all headers is between 4 and 6 seconds, independent from the amount of press-in inserts.

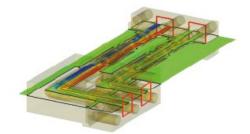
To load the inserts automatically means also that connectors assembled in a wrong way will be recognised and errors consequently prevented.

Directory chapter 16

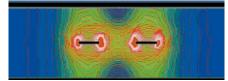
Signal integrity support	Page	
	16.02	
Simulation and modeling	16.02	
Measurement and verification	16.03	
Test board design	16.03	
Design-in support	16.03	
		nal Jrity
		Signal integrity
		1 <u>6</u>
		01

Introduction

HARTING Electronics provides end customers with signal integrity support. We also deliver simulation models and evaluation kits along with our products for signal integrity investigations. The evaluation kits are assembled with SMA's in order to connect them directly with the measurement instruments. Customers benefit from savings in terms of time and the costs for the preliminary evaluation of the connector. We offer test boards suitable for the connector evaluation itself and have built backplanes for measurements within applications such as VME and CompactPCI. Reference structures and well established measurement techniques allow a full de-embedding of the propagation characteristics of the interconnect itself for testing and verification. Furthermore, we have developed a high-speed test backplane with different connector areas and PCB design topologies. We can provide footprint and routing recommendations for each of our products. A variety of test boards and technical data for different products are available on request.


HARTING Electronics is also an active member in standardization groups such as VITA, PICMG, OBSAI and supports sub-committees for new interconnect solutions. We engage in close cooperation with universities and industrial partners for research activities.

Signal integrity capabilities


- Simulation and modeling
- Measurement and verification
- Test board design
- Design-in support

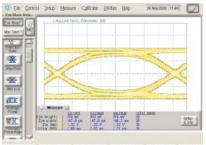
Simulation and modeling

We have the capability to perform full 3D-FEM simulations of the CAD geometry with different well established tools such as CST Microwave Studio and Ansoft HFSS. This enables us to post-process the data for field distribution and full S-Parameter analysis.

In conducting SPICE modeling, impedance calculation and field distribution analysis of the geometry, we draw on static 3D-FEM, 2D-FEM and planar field solvers.

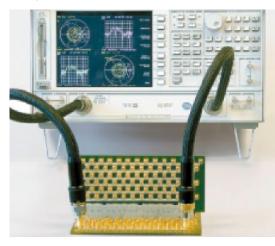
We have developed tools for SPICE netlist conversion based on R, L, C, G files for the post-processing of the data.

System simulation, including particular chip, trace, vias and connector sub-circuits are performed with tools such as HSPICE and ADS.


 (中州四 월, 2 4 田(小小小学者品) (明治) (明治) (明治) () 6 (明治) (明治) (明治) (明治) 	CENTRAL STREET, STREET

Signal integrity

Time-domain measurements



Cole 20 Wer Start 20 Wer Start

Parameters:

- Characteristic impedance
- Propagation delay
- Reflection
- Crosstalk
- Eye-diagram and mask-test
- Bit-error rate testing (BERT) up to 12.5 Gbps per differential line

Frequency-domain measurements

Parameters:

- S-parameter analysis (up to 40 GHz)
- Insertion- and return loss, crosstalk
- Fourier-transformation, gating, error-location

Test board design

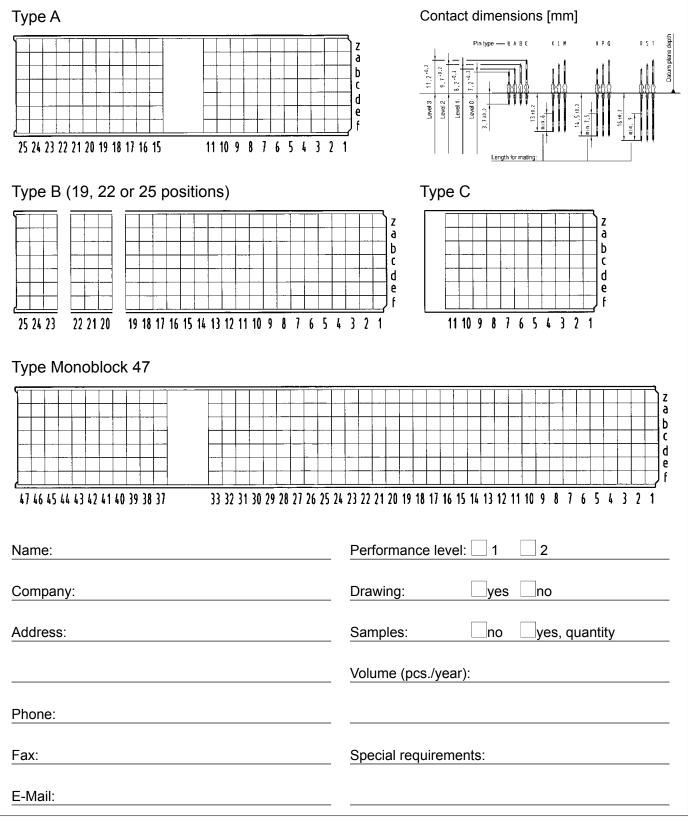
ISO/IEC 11801/CAT 5 measurements

Parameters:

- Near-end crosstalk (NEXT)
- Power sum NEXT (PS NEXT)
- Far-end crosstalk (FEXT)
- Power sum FEXT (PS FÉXT)
- Return loss
- Attenuation
- Attenuation to Crosstalk Ratio (ACR)
- Power sum ACR (PS ACR)

Design-in support

- Customized PCB design close to the real application
- Footprint and routing recommendations
- Full measurement characterization

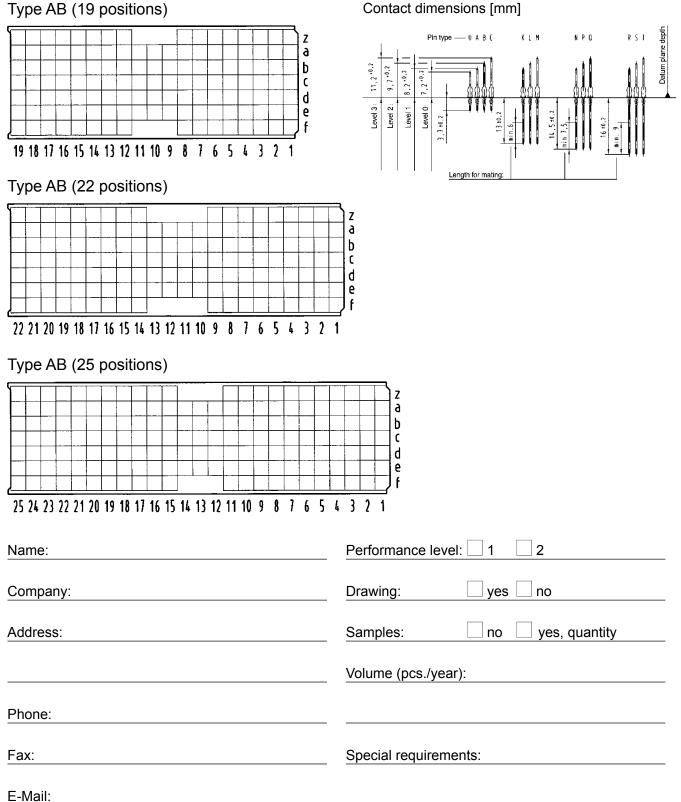

Γ	10	te	S																			HA	RT
	-							 			 		 		 		 	 		 			
			-										 		 			 		 	 		
								 	0		 		 		 		 	 		 			
	-							 		 	 		 		 								
	-			_							 				 		 	 		 			
														Ĩ									
								 	0	 	 		 		 								
			1	1	1	1	1					1											

har:bus® HM

HARTING customer request form*

Should you need a specially loaded connector for your application, please use this request form. Fill out the drawing for the desired connector style and mark each position with the required contact length (A, B, ..., S, T).

* For AB types see page 20.02 For D, E and DE types see page 20.03


Customer request form

HARTING customer request form

Should you need a specially loaded connector for your application, please use this request form. Fill out the drawing for the desired connector style and mark each position with the required contact length (A, B, ..., S, T).

Type AB (19 positions)

Customer request form

2(

02

har:bus® HM

Customer request form

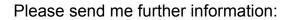
20


03

HARTING customer request form

Should you need a specially loaded connector for your application, please use this request form. Fill out the drawing for the desired connector style and mark each position with the required contact length (A, B, ..., S, T).

Contact dimensions [mm]



List of part numbers

Part number	Page	Part number	Page	Part number	Page	Part number	Page	Part number	Pa
02 01 160 1101	00.45	07 79 000 0170	15.08	17 01 100 1001	00.14	17 04 110 1201	00.16	17 12 200 1201	00
02 01 160 1102	00.45	07 79 000 0171	15.08	17 01 100 1201	00.14	17 04 110 2201	00.16	17 12 200 2201	00
						17 04 110 2201	00.10	17 12 200 2201	00
02 01 160 1105	00.45	07 79 000 0204	15.08	17 01 100 2001	00.14	17 04 132 1001	00.16	17 12 250 1001	00
02 01 160 1106	00.45	07 79 000 0205	15.08	17 01 100 2201	00.14	17 04 132 2001	00.16	17 12 250 1201	00
02 01 160 2101	00.45			17 01 110 1201	00.12			17 12 250 2001	00
02 01 160 2102	00.45			17 01 110 1204	00.12	17 04 154 1002	00.16	17 12 250 2201	00
				17 01 110 1204	00.12	17 04 154 1010	00.16	17 12 230 2201	00
		09 02 000 9902	00.48			17 04 154 1201	00.16		
02 02 160 1201	00.46	09 02 000 9903	00.48	17 01 110 2201	00.12	17 04 154 1203	00.16	47 40 005 4004	
02 02 160 1202	00.46	09 02 000 9903	00.40	17 01 110 2204	00.12	17 04 154 2002	00.16	17 13 095 1201	00
02 02 160 1301	00.46			17 01 110 2402	00.13	17 04 154 2010	00.16	17 13 095 2201	00
02 02 160 1302	00.46	09 03 000 6101	00.44	17 01 132 1007	00.12	17 04 154 22010	00.10	17 13 127 1201	00
02 02 160 1602	00.46							17 13 127 1201	00
		09 03 000 6102	00.44	17 01 132 1203	00.12	17 04 154 2203	00.16		
02 02 160 2201	00.46	09 03 000 6103	00.44	17 01 132 2007	00.12			17 13 127 2201	00
02 02 160 2202	00.46	09 03 000 6104	00.44	17 01 132 2203	00.12			17 13 127 2601	00
02 02 160 2301	00.46	09 03 000 6110	00.44	17 01 154 1001	00.13	17 05 095 1201	00.17		
02 02 160 2301	00.48	09 03 000 6111	00.44			17 05 095 1401	00.17		
02 02 160 2302	00.46	09 03 000 6113	00.44	17 01 154 1201	00.12	17 05 095 2201	00.17	17 14 110 1201	0
		09 03 000 6114	00.44	17 01 154 1203	00.13	17 05 095 2401	00.17	17 14 110 2201	0
				17 01 154 1204	00.13				
02 03 160 2201	00.47	09 03 000 6115	00.44	17 01 154 1205	00.12	17 05 133 1005	00.17	17 14 146 1201	0
02 00 100 2201		09 03 000 6122	00.44	17 01 154 1603	00.13	17 05 133 1201	00.17	17 14 146 1601	0
		09 03 000 6133	00.44	17 01 154 1604	00.13	17 05 133 1203	00.17	17 14 146 2201	0
02 05 000 0004	00.48	09 03 000 6134	00.44	17 01 154 2001	00.13	17 05 133 1602	00.17	17 14 146 2601	0
02 00 000 0004	00.40	09 03 000 6225	00.44	17 01 154 2201	00.13	17 05 133 2005	00.17		
		09 03 000 6250	00.44						
02 44 000 0007	00.48	09 03 000 9913	00.48	17 01 154 2203	00.13	17 05 133 2201	00.17	17 15 125 1201	0
02 44 000 0008	00.48			17 01 154 2204	00.13	17 05 133 2203	00.17	17 15 125 1201	0
		09 03 124 2901	00.42	17 01 154 2205	00.12	17 05 133 2602	00.17	17 15 125 2201	0
02 44 000 0009	00.48	09 03 124 6901	00.42	17 01 154 2603	00.13			17 15 169 1003	00
		09 03 124 7901	00.42	17 01 154 2604	00.13			17 15 169 1201	0
						17 06 220 1201	00.28	17 15 169 2003	0
		09 03 224 6830	00.43			17 06 220 1202	00.28		
07 11 100 0023	07.06			17 02 125 1201	00.15	17 06 220 2201	00.28	17 15 169 2201	0
07 11 100 0024	07.06			17 02 125 1201	00.15	17 06 220 2202	00.28		
07 11 100 0024	07.06	09 05 048 0501	00.48			17 00 220 2202	00.20		
07 11 100 0020	07.00			17 02 125 2201	00.15	17 06 232 1201	00.28	17 21 000 4102	0
07 11 900 0023	07.06			17 02 125 2205	00.15	17 06 232 2201	00.28	17 21 000 4102	0
07 11 900 0024	07.06	09 73 296 6801	00.48	17 02 150 1201	00.15			17 21 000 1102	0
				17 02 150 1201		17 06 308 1001	00.29	17 21 090 1103	0
				17 02 150 2201	00.15	17 06 308 1005	00.29	17 21 090 2103	0
07 31 100 0019	07.07	09 89 040 0000	15.12	17 02 175 1006	00.15	17 06 308 1201	00.28	17 21 110 1101	0
07 31 100 0020	07.07			17 02 175 1201	00.15	17 06 308 1202	00.28	17 21 110 1102	0
07 31 100 0021	07.07			17 02 175 1202	00.15	17 06 308 1203	00.28		
		09 99 000 0174	00.44	17 02 175 2006	00.15	17 06 308 2001		17 21 110 2101	0
07 31 100 0028	07.08	09 99 000 0196	00.44				00.29	17 21 110 2102	0
07 31 900 0021	07.07	09 99 000 0201	15.09	17 02 175 2201	00.15	17 06 308 2005	00.29		
07 31 900 0022	07.07	09 99 000 0239	15.03	17 02 175 2202	00.15	17 06 308 2201	00.28		
						17 06 308 2202	00.28	17 22 000 4102	0
		09 99 000 0243	00.44			17 06 308 2203	00.28	17 22 125 1101	00
07 71 100 0042	08.07	09 99 000 0244	15.09	17 03 055 1201	00.22				
01 11 100 0012	00.01	09 99 000 0255	15.09	17 03 055 1202	00.22			17 22 125 1102	0
		09 99 000 0261	15.09	17 03 055 1401	00.22	17 10 200 1201	00.34	17 22 125 2101	0
07 73 000 0280	00.41	09 99 000 0279	15.09	17 03 055 2201	00.22	17 10 200 2201	00.34	17 22 125 2102	0
	08.08	09 99 000 0282	15.09	17 03 055 2202	00.22	17 10 200 2201			
07 73 000 0393		09 99 000 0328	00.44			17 10 244 1001	00.34		
07 73 000 0394	08.08	09 99 000 0328	00.44	17 03 055 2401	00.22	17 10 244 1201	00.34	17 23 000 4102	0
				17 03 066 1001	00.22	17 10 244 2001	00.34	17 23 000 4102	0
07 70 000 000 /	45.00			17 03 066 2001	00.22	17 10 244 2201	00.34	17 23 000 4102	0
07 79 000 0034	15.08					17 10 244 2201	00.04		
07 79 000 0045	15.08	15 01 040 4601 040	05.04	17 03 077 1001	00.23			17 23 055 1101	0
07 79 000 0061	15.08	15 01 040 4601 042		17 03 077 1201	00.22	47 44 470 4004	00.00	17 23 055 1102	00
07 79 000 0080	15.08	15 01 040 4601 042		17 03 077 1202	00.22	17 11 176 1201	00.32	17 23 055 2101	0
07 79 000 0081	15.08	15 01 040 4001 533	05.04	17 03 077 1601	00.23	17 11 176 2201	00.32	17 23 055 2101	00
07 79 000 0155	15.06			17 03 077 2001	00.23	17 11 220 1001	00.32	17 23 035 2102	00
		15 02 400 4004 040	05.05						
07 79 000 0156	15.06	15 02 100 4601 040		17 03 077 2201	00.22	17 11 220 1201	00.32	17.01.000	
07 79 000 0157	00.41	15 02 100 4601 042		17 03 077 2202	00.22	17 11 220 2001	00.32	17 24 000 4102	0
07 79 000 0158	00.41	15 02 100 4601 333	05.05	17 03 077 2601	00.23	17 11 220 2201	00.32	17 24 000 4102	0

List of part numbers

Part number	Page	Part number	Page	Part number	Page	Part number	Page	Part number	Page
17 24 110 1101	00.25	17 44 144 1205	02.04	17 61 004 2101	03.04	17 79 000 0026	00.35	17 99 000 0059	15.04
17 24 110 1102	00.25	17 44 144 2205	02.04	17 61 004 2102	03.04	17 79 000 0028	00.35	17 99 000 0060	15.02
17 24 110 2101	00.25			17 61 004 2103	03.04	17 79 000 0029	00.35	17 99 000 0061	15.02
17 24 110 2102	00.25			17 61 004 2104	03.04	17 79 000 0080	00.41	17 99 000 0063	15.05
		17 45 144 1204	02.04	17 61 004 2801	03.05			17 99 000 0065	15.05
		17 45 144 2204	02.04	17 61 004 2802	03.05			17 99 000 0066	15.05
17 25 000 4102	00.25			11 01 001 2002	00.00	47.00.000.0004	45.00	17 99 000 0068	15.05
						17 99 000 0001	15.06	17 99 000 0069	15.06
17 25 095 1101	00.25	17 46 144 1207	02.05			17 99 000 0002	15.06	17 99 000 0009	15.00
17 25 095 1102	00.25	17 46 144 1208	02.05	17 66 004 2201	03.06	17 99 000 0003	15.06		
17 25 095 2101	00.25	17 46 144 1209	02.05	11 00 001 2201	00.00	17 99 000 0004	15.06	17 99 000 0071	15.06
7 25 095 2102	00.25	17 46 144 1210	02.05			17 99 000 0005	15.06	17 99 000 0072	15.06
		17 46 144 2207	02.05			17 99 000 0006	15.06	17 99 000 0073	15.02
		17 46 144 2208	02.05	17 70 000 1001	00.37	17 99 000 0007	15.06	17 99 000 0074	15.02
7 26 000 4102	00.30	17 46 144 2209	02.05	17 70 000 1002	00.37	17 99 000 0008	15.06	17 99 000 0090	15.06
7 26 200 1103	00.30	17 46 144 2210	02.05	17 70 000 1003	00.37	17 99 000 0009	15.06	17 99 000 0091	15.06
7 26 200 2103	00.30		02.00	17 70 000 1003	00.37	17 99 000 0012	15.02	17 99 000 0093	15.07
				17 70 000 2001		17 99 000 0013	15.02	17 99 000 0094	15.07
7 26 220 1101	00.30	17 51 072 1102	02.08		00.38	17 99 000 0014	15.03	17 99 000 0095	15.07
7 26 220 1102	00.30	17 51 072 1802	02.10	17 70 000 2002	00.38	17 99 000 0015	15.03	17 99 000 0102	15.07
7 26 220 2101	00.30	17 51 072 2102	02.08	17 70 000 2003	00.38	17 99 000 0015	15.03	17 99 000 0103	15.07
7 26 220 2102	00.30	17 51 072 2802	02.10	17 70 000 2004	00.38				
		11 01 012 2002	02.10	17 70 000 3001	00.40	17 99 000 0017	15.03		
				17 70 000 3002	00.40	17 99 000 0018	15.03		
7 29 000 4102	00.24	17 52 072 1105	02.08	17 70 000 3003	00.40	17 99 000 0019	15.03		
7 29 000 4102	00.30	17 52 072 1106	02.08	17 70 000 3004	00.40	17 99 000 0020	15.03	27 11 122 2001	11.04
		17 52 072 1107	02.08	17 70 000 4001	00.38	17 99 000 0021	15.03	27 11 122 2001	11.04
		17 52 072 1107	02.08	17 70 000 4002	00.38	17 99 000 0022	15.03		
7 33 000 4102	00.26	17 52 072 1108	02.08	17 70 000 4003	00.38	17 99 000 0023	15.03		
7 00 005 4404	00.00			17 70 000 4004	00.38	17 99 000 0024	15.03	27 21 121 8000	11.04
7 33 095 1101	00.26	17 52 072 1806	02.10	17 70 000 5001	00.38	17 99 000 0025	15.03	27 21 121 8002	11.04
7 33 095 1102	00.26	17 52 072 1807	02.10	17 70 000 5002	00.38	17 99 000 0026	15.03	27 21 121 8004	11.04
7 33 095 2101	00.26	17 52 072 1808	02.10	17 70 000 5002	00.38	17 99 000 0027	15.03	27 21 121 8005	11.04
7 33 095 2102	00.26	17 52 072 2105	02.08		00.38	17 99 000 0028	15.03	27 21 121 8006	11.04
		17 52 072 2106	02.08	17 70 000 5004		17 99 000 0029	15.04	27 21 121 8010	11.04
		17 52 072 2107	02.08	17 70 000 6001	00.39	17 99 000 0030	15.04	21 21 121 0010	11.04
7 34 000 4102	00.26	17 52 072 2108	02.08	17 70 000 6002	00.39	17 99 000 0031	15.04		
7 34 110 1101	00.26	17 52 072 2805	02.10	17 70 000 6003	00.39	17 99 000 0032	15.04		
7 34 110 1102	00.26	17 52 072 2806	02.10	17 70 000 6004	00.39		15.04	27 71 040 0001	11.05
7 34 110 2101	00.26	17 52 072 2807	02.10	17 70 000 7001	00.39	17 99 000 0033		27 71 040 0002	11.05
7 34 110 2102	00.26	17 52 072 2808	02.10	17 70 000 7002	00.39	17 99 000 0034	15.04		
1 04 110 2102	00.20			17 70 000 7003	00.39	17 99 000 0035	15.04		
				17 70 000 7004	00.39	17 99 000 0036	15.04		
7 35 125 1101	00.26	17 54 144 1102	02.08	17 70 000 8001	00.39	17 99 000 0037	15.04		
7 35 125 1101	00.20	17 54 144 1802	02.10	17 70 000 8002	00.39	17 99 000 0038	15.04	33 07 223 0500 112	08.05
7 35 125 1102	00.26	17 54 144 2102	02.08	17 70 000 8003	00.39	17 99 000 0039	15.04	33 07 223 1500 113	08.05
		17 54 144 2802	02.10	17 70 000 8004	00.39	17 99 000 0040	15.04	33 07 223 2000 114	08.05
7 35 125 2102	00.26		52.10		20.00	17 99 000 0041	15.04	00 01 220 2000 114	00.00
						17 99 000 0042	15.04		
7 44 070 4004	00.04	17 55 144 1105	02.08			17 99 000 0043	15.04		
7 41 072 1204	02.04	17 55 144 1106	02.08	17 79 000 0010	00.35	17 99 000 0044	15.04	33 07 233 0500 109	08.05
7 41 072 2204	02.04	17 55 144 1107	02.08	17 79 000 0011	00.35	17 99 000 0045	15.04	33 07 233 1500 110	08.05
		17 55 144 1107	02.08	17 79 000 0012	00.35	17 99 000 0046	15.04	33 07 233 2000 111	08.05
7 40 070 4000	00.04	17 55 144 1108	02.08	17 79 000 0012	00.35	17 99 000 0040	15.04		
7 42 072 1203	02.04								
7 42 072 2203	02.04	17 55 144 1806	02.10	17 79 000 0014	00.35	17 99 000 0048	15.04		
		17 55 144 1807	02.10	17 79 000 0015	00.35	17 99 000 0049	15.04	00.07.040.0500.004	44.05
	66 6 7	17 55 144 1808	02.10	17 79 000 0016	00.35	17 99 000 0050	15.04	33 27 243 0500 001	11.05
7 43 072 1209	02.05	17 55 144 2105	02.08	17 79 000 0018	00.35	17 99 000 0051	15.04	33 27 243 0500 006	11.05
7 43 072 1210	02.05	17 55 144 2106	02.08	17 79 000 0019	00.35	17 99 000 0052	15.02	33 27 243 0500 015	11.05
7 43 072 1211	02.05	17 55 144 2107	02.08	17 79 000 0020	00.35	17 99 000 0053	15.02	33 27 243 1000 002	11.05
7 43 072 1212	02.05	17 55 144 2108	02.08	17 79 000 0021	00.35	17 99 000 0054	15.02	33 27 243 1000 007	11.05
7 43 072 2209	02.05	17 55 144 2805	02.10	17 79 000 0022	00.35	17 99 000 0055	15.02	33 27 243 1000 016	11.05
7 43 072 2210	02.05	17 55 144 2806	02.10	17 79 000 0023	00.35	17 99 000 0056	15.02	33 27 243 2000 003	11.05
17 43 072 2211	02.05	17 55 144 2807	02.10	17 79 000 0024	00.35	17 99 000 0057	15.02	33 27 243 2000 008	11.05
17 43 072 2212	02.05	17 55 144 2808	02.10	17 79 000 0025	00.35	17 99 000 0058	15.04	33 27 243 2000 017	11.05
	02.00	11 00 111 2000	02.10	11 10 000 0020	00.00	11 00 000 0000	10.01	00 ET E 10 2000 011	

Interface Connectors

Connectors DIN 41612

Coaxial and Metric Connectors

TCA Connectors

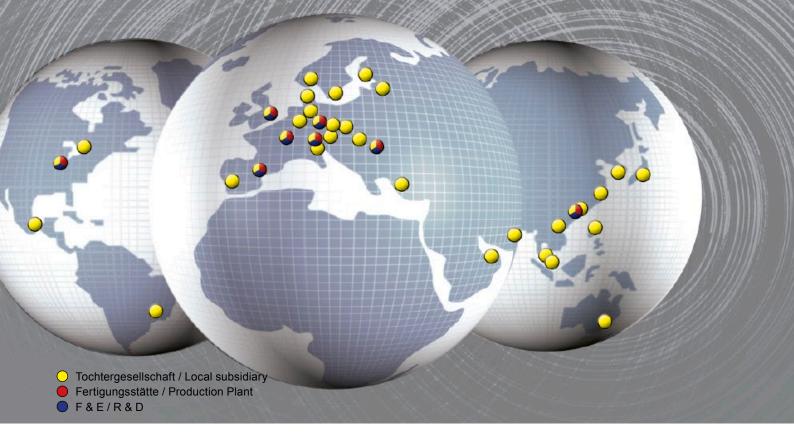
Device Connectivity

HA

Industrial **Connectors Han®**

Intelligent Network Solutions

Application brochure


High Speed Backplanes

Sender:

Company:	Street:
Department:	Postcode/Town:
Name:	Country:
Prename:	Phone:
Function:	Fax:

Please send it by post or fax to your local HARTING representatives (see page addresses) or visit us under www.HARTING.com.

Postcode/Town:		
Country:		
Phone:		
Fax:		
E-Mail:	 	

Sales Network – worldwide

Afghanistan

see United Arab Emirates

Albania

see Eastern Europe

Argentina

Condelectric S.A. Hipólito Yrigoyen 2591, 1640 - Martínez Buenos Aires – Argentina Phone +54 11 4836 1053 Fax +54 11 4836 1053 comercial@condelectric.com.ar

Armenia

see Eastern Europe

Australia

HARTING Pty Ltd Suite 11 / 2 Enterprise Drive Bundoora 3083, AUS-Victoria Phone +61 3 9466 7088 Fax +61 3 9466 7099 au@HARTING.com www.HARTING.com.au

Austria

HARTING Ges.m.b.H. Deutschstraße 19, A-1230 Wien Phone +431 6162121 Fax +431 6162121-21 at@HARTING.com www.HARTING.at

Azerbaijan see Eastern Europe

Bahrain see United Arab Emirates

Belgium

HARTING N.V./S.A. Z.3 Doornveld 23, B-1731 Zellik Phone +32 2 466 0190 Fax +32 2 466 7855 be@HARTING.com www.HARTING.be

Bosnia and Herzegovina see Eastern Europe

Brazil

HARTING Ltda. Rua Major Paladino 128 – Prédio 11 CEP 05307-000 – São Paulo – SP – Brasil Phone +55 11 5035 0073 Fax +55 11 5034 4743 br@HARTING.com www.HARTING.com.br

Brunei

see Singapore

Bulgaria see Eastern Europe

Canada

HARTING Canada Inc. 8455 Trans-Canada Hwy., Suite 202 St. Laurent, QC, H4S1Z1, Canada Phone 855-659-6653 Fax 855-659-6654 info.ca@HARTING.com www.HARTING.ca

China HARTING (Zhuhai) Manufacturing Co., Ltd. Shanghai Branch, Room 3501- 3503, No. 1, Hong Qiao Road, Grand Gateway I Xu Hui District, Shanghai 200030, China Phone +86 21 6386 2200 Fax +86 21 6386 8636 cn@HARTING.com www.HARTING.com.cn

Croatia see Eastern Europe

Czech Republic

HARTING s.r.o. Mlýnská 2, CZ-160 00 Praha 6 Phone +420 220 380 460 Fax +420 220 380 461 cz@HARTING.com www.HARTING.cz

Denmark

HARTING ApS Hjulmagervej 4a DK - 7100 Vejle Phone +45 70 25 00 32 Fax +45 75 80 64 99 dk@HARTING.com www.HARTING.dk

Sales Network – worldwide

Eastern Europe

HARTING Eastern Europe GmbH Bamberger Straße 7 D-01187 Dresden Phone +49 351 4361 760 Fax +49 351 436 1770 Eastern.Europe@HARTING.com www.HARTING.com

Egypt

see United Arab Emirates

Estonia see Eastern Europe

Finland

HARTING Oy Teknobulevardi 3-5 FI-01530 Vantaa Phone +358 207 291 510 Fax +358 207 291 511 fi@HARTING.com www.HARTING.fi

France

HARTING France 181 avenue des Nations, Paris Nord 2 BP 66058 Tremblay en France F-95972 Roissy Charles de Gaulle Cédex Phone +33 1 4938 3400 Fax +33 1 4863 2306 fr@HARTING.com www.HARTING.fr

Germany

HARTING Deutschland GmbH & Co. KG P.O. Box 2451, D-32381 Minden Simeonscarré 1, D-32427 Minden Phone +49 571 8896 0 Fax +49 571 8896 282 de@HARTING.com www.HARTING.de

Georgia see Eastern Europe

Great Britain

HARTING Ltd., Caswell Road Brackmills Industrial Estate GB-Northampton, NN4 7PW Phone +44 1604 827 500 Fax +44 1604 706 777 gb@HARTING.com www.HARTING.co.uk

Hong Kong

HARTING (HK) Limited Regional Office Asia Pacific 3512 Metroplaza Tower 1 223 Hing Fong Road Kwai Fong, N. T., Hong Kong Phone +852 2423 7338 Fax +852 2480 4378 ap@HARTING.com www.HARTING.com.hk

Hungary

HARTING Magyarország Kft. Fehérvári út 89-95, H-1119 Budapest Phone +36 1 205 34 64 Fax +36 1 205 34 65 hu@HARTING.com www.HARTING.hu

India

HARTING India Pvt Ltd 7th Floor (West Wing), Central Square II Unit No.B-19 Part, B 20&21 TVK Industrial Estate Guindy, Chennai - 600032 Phone +91-44-43560415 +91-44-43456262 Fax +91-44-43560417 in@HARTING.com http://www.HARTING.in

Indonesia see Malaysia

Iran see United Arab Emirates

Iraq see United Arab Emirates

Israel

COMTEL Israel Electronic Solutions Ltd. Bet Hapamon, 20 Hataas st. P.O.Box 66 Kefar-Saba 44425 Phone +972-9-7677240 Fax +972-9-7677243 sales@comtel.co.il www.comtel.co.il

Italy

HARTING SpA Via Dell' Industria 7 I-20090 Vimodrone (Milano) Phone +39 02 250801 Fax +39 02 2650 597 it@HARTING.com www.HARTING.it

Japan

HÅRTING K. K. Yusen Shin-Yokohama 1 Chome Bldg., 2F 1-7-9, Shin-Yokohama, Kohoku Yokohama 222-0033 Japan Phone +81 45 476 3456 Fax +81 45 476 3466 jp@HARTING.com www.HARTING.co.jp

Jemen see United Arab Emirates

Jordan see United Arab Emirates

Kazakhstan see Eastern Europe

Kirghizia see Eastern Europe

Korea (South)

HARTING Korea Limited #308 Yatap Leaders Building 342-1, Yatap-dong, Bundang-gu Sungnam-City, Kyunggi-do 463-828, Republic of Korea Phone +82 31 781 4615 Fax +82 31 781 4616 kr@HARTING.com www.HARTING.co.kr

Kosovo see Eastern Europe

Kuwait see United Arab Emirates

Latvia see Eastern Europe

Lebanon see United Arab Emirates

Lithuania see Eastern Europe

Macedonia see Eastern Europe

Malaysia (Office)

HARTING Singapore Pte Ltd Malaysia Branch 11-02 Menara Amcorp Jln. Persiaran Barat 46200 PJ, Sel. D. E., Malaysia Phone +60 3 / 7955 6173 Fax +60 3 / 7955 5126 sg@HARTING.com

Montenegro see Eastern Europe

Netherlands

HARTING B.V. Larenweg 44 NL-5234 KA ,s-Hertogenbosch Postbus 3526 NL-5203 DM ,s-Hertogenbosch Phone +31 736 410 404 Fax +31 736 440 699 nl@HARTING.com www.HARTINGby.nl

New Zealand

see Australia

Norway

HARTING A/S Østensjøveien 36, N-0667 Oslo Phone +47 22 700 555 Fax +47 22 700 570 no@HARTING.com www.HARTING.no

Oman see United Arab Emirates

Pakistan see United Arab Emirates

Philippines see Malaysia

Sales Network – worldwide

Poland

HARTING Polska Sp. z o. o ul. Duńska 9 PL- 54-427 Wrocław Phone +48 71 352 81 71 Fax +48 71 350 42 13 pl@HARTING.com www.HARTING.pl

Portugal

HARTING Iberia, S. A. Avda. Josep Tarradellas 20-30 4° 6a E-08029 Barcelona Phone +351 219 673 177 Fax +351 219 678 457 es@HARTING.com www.HARTING.es/pt

Qatar

see United Arab Emirates

Republic of Moldova see Eastern Europe

Romania

HARTING Romania SCS Europa Unita str. 21 550018-Sibiu, Romania Phone +40 369-102 671 Fax +40 369-102 622 ro@HARTING.com www.HARTING.com

Russia

HARTING ZAO Maliy Sampsoniyevsky prospect 2A 194044 Saint Petersburg, Russia Phone +7 812 327 6477 Fax +7 812 327 6478 ru@HARTING.com www.HARTING.ru

Saudi Arabia see United Arab Emirates

Serbia see Eastern Europe

Singapore

HARTING Singapore Pte Ltd. 25 International Business Park #04-108 German Centre Singapore 609916 Phone +65 6225 5285 Fax +65 6225 9947 sg@HARTING.com www.HARTING.sg

Slovakia

HARTING s.r.o. Sales office Slovakia J. Simora 5, SK - 940 52 Nové Zámky Phone +421 356-493 993 Fax +421 356-402 114 sk@HARTING.com www.HARTING.sk

Slovenia see Eastern Europe

South Africa

HARTING South Africa (Pty) Ltd Ground Floor, Twickenham Building PO Box 67302 Johannesburg (Bryanston) 2021, South Africa Phone +27 (0) 11 575 0017 Fax +27 (0) 11 576 6000 za@HARTING.com www.HARTING.co.za

Spain

HARTING Iberia S.A. Avda. Josep Tarradellas 20-30 4º 6ª E-08029 Barcelona Phone +34 93 363 84 75 Fax +34 93 419 95 85 es@HARTING.com www.HARTING.es

Sweden

HARTING AB Gustavslundsvägen 141 B 4tr S-167 51 Bromma Phone +46 8 445 7171 Fax +46 8 445 7170 se@HARTING.com www.HARTING.se

Switzerland

HARTING AG Industriestrasse 26 CH-8604 Volketswil Phone +41 44 908 20 60 Fax +41 44 908 20 69 ch@HARTING.com www.HARTING.ch

Syria

see United Arab Emirates

Taiwan

HARTING Taiwan Ltd. Room 1, 5/F 495 GuangFu South Road RC-110 Taipei, Taiwan Phone +886 2 2758 6177 Fax +886 2 2758 7177 tw@HARTING.com www.HARTING.com.tw

Tajikistan

see Eastern Europe

Thailand see Malaysia

Turkey

HARTING TURKEI Elektronik Ltd. Şti. Barbaros Mah. Dereboyu Cad. Fesleğen Sok. Uphill Towers, A-1b Kat:8 D:45 34746 Ataşehir, İstanbul Phone +90 216 688 81 00 Fax +90 216 688 81 01 tr@HARTING.com www.HARTING.com.tr

Turkmenistan see Eastern Europe Ukraine see Eastern Europe

United Arab Emirates

HARTING Middle East FZ-LLC Knowledge Village, Block 2A, Office F72 P.O. Box 454372, Dubai United Arab Emirates Phone +971 4 453 9737 Fax +971 4 439 0339 uae@HARTING.com www.HARTING.ae

USA

HARTING Inc. of North America 1370 Bowes Road USA-Elgin, Illinois 60123 Phone +1 (877) 741-1500 (toll free) Fax +1 (866) 278-0307 (Inside Sales) us@HARTING.com www.HARTING-USA.com

Uzbekistan see Eastern Europe

Vietnam see Singapore

Distributors – worldwide

Digi-Key Corporation: www.digikey.com

Farnell: www.farnell.com

FUTURE Electronics: www.futureelectronics.com

Mouser Electronics: www.mouser.com

RS Components: www.rs-components.com

Other countries and general contact

HARTING Electronics GmbH P.O. Box 1433 32328 Espelkamp - Germany Phone +49 5772/47-97200 Fax +49 5772/47-777 electronics@HARTING.com

HARTING.com -

the gateway to your country website.

www.HARTING.ae www.HARTING.at www.HARTING.com.au www.HARTING.be www.HARTING.com.br www.HARTING.ca www.HARTING.ch www.HARTING.com.cn www.HARTING.cz www.HARTING.de www.HARTING.dk www.HARTING.es www.HARTING-easterneurope.com www.HARTING.fi www.HARTING.fr www.HARTING.co.uk www.HARTING.com.hk www.HARTING.hu www.HARTING.co.in www.HARTING.it www.HARTING.co.jp www.HARTING.co.kr www.HARTINGbv.nl www.HARTING.no www.HARTING.pl www.HARTING.pt www.HARTING.ro www.HARTING.ru www.HARTING.se www.HARTING.sg www.HARTING.sk www.HARTING.com.tr www.HARTING.com.tw www.HARTING-USA.com www.HARTING.co.za

HARTING Technology Group info@HARTING.com www.HARTING.com