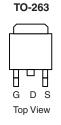
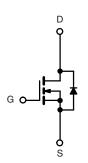


IRF3515STRPBF-VB Datasheet N-Channel 150V (D-S) MOSFET


PRODUCT SUMMARY					
V _{DS} (V)	R_{DS(on)} (Ω)	I _D (A)			
150	0.035 at V _{GS} = 10 V	45			
	0.042 at V _{GS} = 7.5 V	42			


FEATURES

- Trench Power MOSFETs
- 175 °C Junction Temperature
- New Low Thermal Resistance Package
- PWM Optimized
- Compliant to RoHS Directive 2002/95/EC

APPLICATIONS

• Primary Side Switch

N-Channel MOSFET

ABSOLUTE MAXIMUM RATINGS $T_{C} = 25 \text{ °C}$, unless otherwise noted					
Parameter		Symbol	Limit	Unit	
Drain-Source Voltage		V _{DS}	150	v	
Gate-Source Voltage	V _{GS}	± 20	V		
Continuous Drain Current (T ₁ = 175 °C)	T _C = 25 °C	L	45	•	
Continuous Drain Current $(1) = 175^{\circ} C)$	T _C = 125 °C	I _D	31		
Pulsed Drain Current	I _{DM}	140	A		
Avalanche Current	I _{AR}	50			
Repetitive Avalanche Energy ^a	L = 0.1 mH	E _{AR}	80	mJ	
	T _C = 25 °C	Р	160 ^b		
Maximum Power Dissipation ^a	T _A = 25 °C ^c	– P _D	3.7	W	
Operating Junction and Storage Temperature Range		T _J , T _{stg}	- 55 to 175	°C	

THERMAL RESISTANCE RATINGS					
Parameter	Symbol	Limit	Unit		
Junction-to-Ambient (PCB Mount TO-263 ^c)	R _{thJA}	40	°C/W		
Junction-to-Case (Drain)	R _{thJC}	0.9			

Notes:

a. Duty cycle \leq 1 %.

b. See SOA curve for voltage derating.

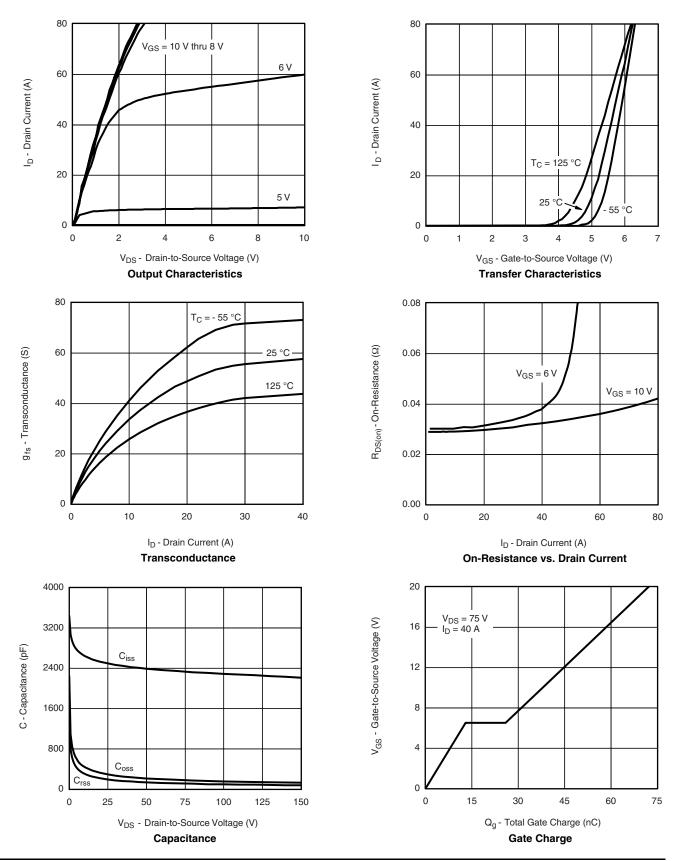
c. When Mounted on 1" square PCB (FR-4 material).

$\begin{array}{ c c c c c c } \hline SPECIFICATIONS T_J = 25 \ ^{\circ}C, unless otherwise noted \\ \hline Parameter & Symbol & Test Conditions & Min. & Typ. & Max. Unit \\ \hline Static & & & & & & & & & & & & & & & & & & &$								
$\begin{array}{ c c c c c c } \hline Static & V_{DS} & V_{DS} = 0 \ V, \ V_{D} = 250 \ \mu A & 150 & V\\ \hline Gate-Threshold Voltage & V_{GS}(m) & V_{DS} = V_{GS}, \ V_{D} = 250 \ \mu A & 4 & 6\\ \hline Gate-Body Leakage & I_{GSS} & V_{DS} = 0 \ V, \ V_{GS} = 0 \ V, \ V_{GS} = 120 \ V & V_{GS} = 120 \ V & V_{GS} = 120 \ V & V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 50 & V\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 250 & A\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 250 & A\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 250 & A\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 250 & A\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 250 & A\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 0 \ V, \ V_{J} = 125 \ ^{\circ}C & 250 & A\\ \hline V_{DS} = 120 \ V, \ V_{GS} = 10 \ V, \ I_{J} = 175 \ ^{\circ}C & 0.080 & A\\ \hline V_{GS} = 10 \ V, \ I_{D} = 15 \ A & 0.035 & V\\ \hline V_{GS} = 10 \ V, \ I_{D} = 15 \ A & 0.042 & V\\ \hline V_{GS} = 10 \ V, \ I_{D} = 15 \ A & 0.042 & V\\ \hline V_{GS} = 10 \ V, \ I_{D} = 15 \ A & 0.042 & V\\ \hline V_{GS} = 10 \ V, \ I_{D} = 15 \ A & 0.042 & V\\ \hline V_{GS} = 10 \ V, \ I_{D} = 15 \ A & 10 & S\\ \hline Drain-Source \ On-State \ Resistance^{a} & g_{IS} & V_{DS} = 15 \ V, \ I_{D} = 15 \ A & 10 & S\\ \hline Drain-Source \ Con-State \ Resistance & G_{IS} & V\\ \hline Uptut \ Capacitance \ C_{IS} & V\\ \hline Output \ Capacitance \ C_{IS} & V\\ \hline Cas = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & 2200 & P\\ \hline \hline Cate \ Resistance \ R_{g} & V\\ \hline Cate \ Resistance \ R_{g} & V\\ \hline Cate \ Resistance \ R_{g} & V\\ \hline Cate \ Charge^{\circ} & Q\\ \hline Gate-Drain \ Charge^{\circ} & Q\\ \hline Cate \ Charge^{\circ} & V\\ \hline Cate \ Charge^{\circ} & V\\ \hline Cate \ Charge^{\circ} & C\\ \hline$	SPECIFICATIONS $T_J = 25^{\circ}$	C, unless o	therwise noted					
$ \begin{array}{ c c c c c c } \hline Drain-Source Breakdown Voltage V_{DS} & $V_{DS} = 0 \ V, \ D_{S} = 250 \ \mu A$ 150 & V V V V V V V V V $	Parameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit	
$ \begin{array}{c c c c c c c } \hline Gate-Threshold Voltage & V_{GS}(m) & V_{DS} = V_{GS}, I_D = 250 \mu A & 4 & 6 & \\ \hline \end{tabular} \hline \end{tabular} \\ \hline \end{tabular} Gate-Body Leakage & I_{GSS} & V_{DS} = 0 V, V_{GS} = 20 V & & \pm 100 & nA & \\ \hline \end{tabular} \\ \hline tabular$	Static	•	•					
$ \begin{array}{c c c c c c } \hline \mbox{Gate-Threshold Voltage} & V_{GS}(m) & V_{DS} = V_{GS}, n_{D} = 250 \ \mu A & 4 & 6 & 1 \\ \hline \mbox{Gate-Body Leakage} & l_{GSS} & V_{DS} = 0 \ V, V_{GS} = \pm 20 \ V & 1 & \pm 100 & nA & 1 \\ \hline \mbox{VDS} = 120 \ V, V_{GS} = 0 \ V, V_{GS} = 0 \ V & 1 & 1 & 1 \\ \hline \mbox{VDS} = 120 \ V, V_{GS} = 0 \ V, V_{J} = 125 \ C & 250 & 250 & 1 \\ \hline \mbox{VDS} = 120 \ V, V_{GS} = 0 \ V, T_{J} = 125 \ C & 250 & 250 & 1 \\ \hline \mbox{VDS} = 120 \ V, V_{GS} = 0 \ V, T_{J} = 175 \ C & 250 & 1 & 250 & 1 \\ \hline \mbox{VDS} = 120 \ V, V_{GS} = 10 \ V, T_{J} = 175 \ C & 0.008 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VDS} = 10 \ V, T_{J} = 15 \ A & 0.035 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{J} = 15 \ A & 0.042 & 0 & 0.000 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{J} = 15 \ A \ T_{J} = 125 \ C & 0.0060 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{J} = 15 \ A \ T_{J} = 125 \ C & 0.0060 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{J} = 15 \ A \ T_{J} = 125 \ C & 0.0080 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{J} = 15 \ A \ T_{J} = 175 \ C & 0.0080 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{D} = 15 \ A \ T_{J} = 175 \ C & 0.0080 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{D} = 15 \ A \ T_{J} = 175 \ C & 0.0080 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 10 \ V, T_{D} = 15 \ A \ T_{J} = 125 \ C & 0.0080 & 1 & 0 & 0.042 & 0 \\ \hline \mbox{VGS} = 0 \ V, V_{DS} = 25 \ V, f = 1 \ MHz & 10 & 5 & 0 \\ \hline \mbox{VGS} = 0 \ V, V_{DS} = 25 \ V, f = 1 \ MHz & 10 & 0 & 0 & 0 \\ \hline \mbox{VGS} = 0 \ V, V_{DS} = 25 \ V, f = 1 \ MHz & 13 \ T_{J} \ C \ T_{J} = 100 \ T_{J} \ C \ T_{J} \ C$	Drain-Source Breakdown Voltage	V _{DS}	$V_{DS} = 0 V, I_{D} = 250 \mu A$	150			V	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Threshold Voltage	V _{GS(th)}	$V_{DS} = V_{GS}, I_D = 250 \ \mu A$	4		6	v	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Body Leakage	I _{GSS}	V_{DS} = 0 V, V_{GS} = ± 20 V			± 100	nA	
$\begin{tabular}{ c c c c } \hline V_{DS} = 120 V, V_{GS} = 0 V, T_{J} = 175 °C & 250 \\ \hline V_{DS} = 120 V, V_{GS} = 0 V, T_{J} = 175 °C & 0 obtained on 10 0 0 0 0 0 0 0 0 0			$V_{DS} = 150 \text{ V}, \text{ V}_{GS} = 0 \text{ V}$			1		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Zero Gate Voltage Drain Current	I _{DSS}				50	μA	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $			V_{DS} = 120 V, V_{GS} = 0 V, T_{J} = 175 °C			250	1	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$	On-State Drain Current ^a	I _{D(on)}	$V_{DS} \ge 5 \text{ V}, \text{ V}_{GS} = 10 \text{ V}$	80			А	
$ \begin{array}{ c c c c c c c c c c c c c c c c c c c$			V _{GS} = 10 V, I _D = 15 A		0.035			
$ \begin{array}{ c c c c c c } \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 125 \ ^{\circ}C & 0.060 & \hline \\ \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 175 \ ^{\circ}C & 0.080 & \hline \\ \hline \hline V_{GS} = 10 \ V, \ I_D = 15 \ A, \ T_J = 175 \ ^{\circ}C & 0.080 & \hline \\ \hline \hline P \\ \hline \hline P \\ \hline \hline Dynamic^b & & \hline \\ \hline Dynamic^b & & \hline \\ \hline Dupt \ Capacitance & C_{iss} & & \hline \\ Output \ Capacitance & C_{oss} & & \hline \\ Output \ Capacitance & C_{rss} & & \hline \\ Output \ Capacitance & C_{rss} & & \hline \\ \hline P \\ \hline Cate \ Resistance & R_g & & & 2200 & & \hline \\ \hline Total \ Gate \ Charge^c & Q_g & & \hline \\ Gate \ S \\ \hline Gate \ S \\ \hline Gate \ Charge^c & Q_{gs} & & \hline \\ \hline \\ Gate \ Drain \ Charge^c & Q_{gs} & & \hline \\ \hline \\ Turn-On \ Delay \ Time^c & t_{d(on)} & & \hline \\ \hline \\ Rise \ Time^c & t_{d(off)} & & \hline \\ \hline \\ \hline Turn-Off \ Delay \ Time^c & t_{d(off)} & \hline \\ \hline \hline \end{array} \begin{array}{c} \hline \\ V_{OD} = 75 \ V, \ R_g = 10 \ V, \ R_g = 2.5 \ \Omega & & \hline \\ \hline \\ V_{DD} = 75 \ V, \ R_g = 2.5 \ \Omega & & \hline \\ \hline \end{array} \begin{array}{c} \hline \\ 130 & 200 & & \\ \hline \\ \hline \\ 130 & 200 & & \hline \\ \end{array} $		P	V _{GS} = 7.5 V, I _D = 10 A		0.042			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Drain-Source On-State Resistance	DS(on)	V_{GS} = 10 V, I _D = 15 A, T _J = 125 °C		0.060		Ω	
$\begin{array}{c c c c c c c c c c c c c c c c c c c $			V_{GS} = 10 V, I _D = 15 A, T _J = 175 °C		0.080			
$ \begin{array}{c c c c c c c } \hline Input Capacitance & C_{iss} \\ \hline Output Capacitance & C_{oss} \\ \hline Output Capacitance & C_{rss} \\ \hline Reverse Transfer Capacitance & C_{rss} \\ \hline Gate Resistance & R_g \\ \hline Total Gate Charge^c & Q_g \\ \hline Gate-Source Charge^c & Q_{gs} \\ \hline Gate-Drain Charge^c & Q_{gd} \\ \hline Turn-On Delay Time^c & t_{d(on)} \\ \hline Rise Time^c & t_{d(off)} \\ \hline Turn-Off Delay Time^c & t_{d(off)} \\ \hline Input Capacitance & C_{rss} \\ \hline V_{DS} = 75 V, \ V_{GS} = 10 \ V, \ I_D = 40 \ A \\ \hline V_{DD} = 75 \ V, \ R_L = 1.80 \ \Omega \\ I_D \cong 40 \ A, \ V_{GEN} = 10 \ V, \ R_g = 2.5 \ \Omega \\ \hline \end{array} \begin{array}{c c c c c c c c c c c c c c c c c c c $	Forward Transconductance ^a	9 _{fs}	V _{DS} = 15 V, I _D = 15 A	10			S	
$ \begin{array}{c c c c c c c } \hline Output Capacitance & C_{oss} & V_{GS} = 0 \ V, \ V_{DS} = 25 \ V, \ f = 1 \ MHz & \hline 290 & \hline 190 & \hline \\ \hline I90 & \hline & 190 & \hline \\ \hline Gate Resistance & R_g & & 2 & \Omega \\ \hline Gate Resistance & R_g & & 2 & \Omega \\ \hline Total Gate Charge^{C} & Q_g & & & & & & & & & & & & & & & & & & &$	Dynamic ^b	*	•		•	•	•	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Input Capacitance	C _{iss}			2200		pF	
$ \begin{array}{c c c c c c c c c } \hline Gate \ {\sf Resistance} & {\sf R}_g & & & & & & & & & & & & & & & & & & &$	Output Capacitance	C _{oss}	V _{GS} = 0 V, V _{DS} = 25 V, f = 1 MHz		290			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Reverse Transfer Capacitance	C _{rss}			190			
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate Resistance	Rg			2		Ω	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Gate Charge ^c	Qg			38	60		
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Source Charge ^c	Q _{gs}	$V_{DS} = 75 \text{ V}, V_{GS} = 10 \text{ V}, I_{D} = 40 \text{ A}$		13		nC	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Gate-Drain Charge ^c				13		1	
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $	Turn-On Delay Time ^c	t _{d(on)}			15	25		
Turn-Off Delay Time ^c $t_{d(off)}$ $I_D \cong 40 \text{ A}, V_{GEN} = 10 \text{ V}, H_g = 2.5 \Omega$ 3045	Rise Time ^c		V_{DD} = 75 V, R _L = 1.80 Ω		130	200		
	Turn-Off Delay Time ^c	t _{d(off)}	$\text{I}_\text{D}\cong$ 40 A, V_GEN = 10 V, R_g = 2.5 Ω		30	45	ns	
	Fall Time ^c	t _f			90	140		
Source-Drain Diode Ratings and Characteristics $T_C = 25 \ ^{\circ}C^{b}$	Source-Drain Diode Ratings and Cha	aracteristics	Γ _C = 25 °C ^b					
Continuous Current I _S 40		1 .				40		
Pulsed Current I _{SM} A	Pulsed Current	I _{SM}				80	A	
Forward Voltage ^a V_{SD} $I_F = 40 \text{ A}, V_{GS} = 0 \text{ V}$ 1.0 1.5 V	Forward Voltage ^a	V _{SD}	$I_{F} = 40 \text{ A}, V_{GS} = 0 \text{ V}$		1.0	1.5	V	
Reverse Recovery Time t _{rr} 100 150 ns					100	150	ns	
Peak Reverse Recovery Current $I_{RM(REC)}$ $I_F = 40 \text{ A}, dI/dt = 100 \text{ A/}\mu \text{s}$ 58A	Peak Reverse Recovery Current	I _{RM(REC)}	I _F = 40 A, dl/dt = 100 A/μs		5	8	A	
Reverse Recovery Charge Q _{rr} 0.25 0.6 μC	Reverse Recovery Charge	Q _{rr}	1		0.25	0.6	μC	

Notes:

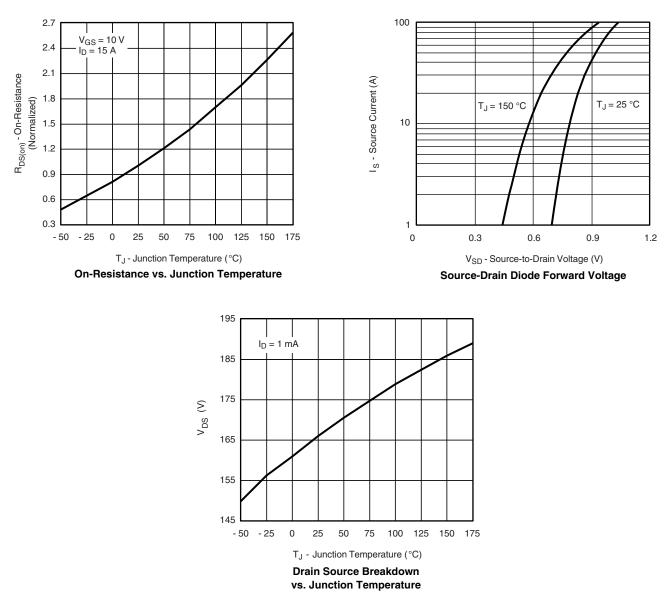
a. Pulse test; pulse width $\leq 300~\mu s,~duty~cycle \leq 2~\%$

b. Guaranteed by design, not subject to production testing.

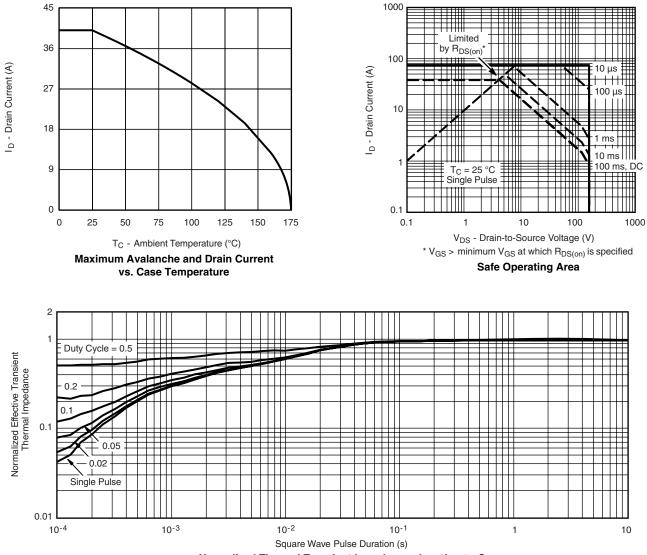

c. Independent of operating temperature.

Stresses beyond those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

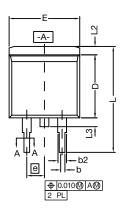
Bsemi Bsemi.com

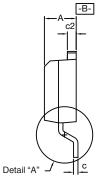

TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

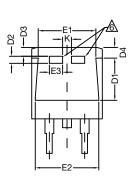
服务热线:400-655-8788


TYPICAL CHARACTERISTICS 25 °C, unless otherwise noted

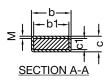
IRF3515STRPBF-VB


THERMAL RATINGS



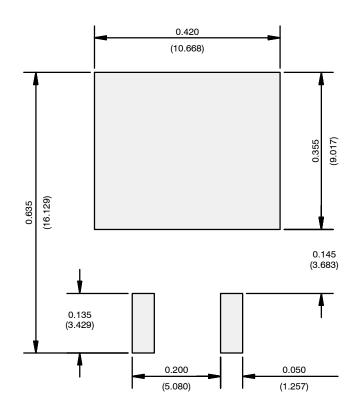

Normalized Thermal Transient Impedance, Junction-to-Case

TO-263 (D²PAK): 3-LEAD



DETAIL A (ROTATED 90°)

		INC	HES	MILLIMETERS		
DIM.		MIN.	MAX.	MIN.	MAX.	
	А	0.160	0.190	4.064	4.826	
	b	0.020	0.039	0.508	0.990	
	b1	0.020	0.035	0.508	0.889	
	b2	0.045	0.055	1.143	1.397	
c*	Thin lead	0.013	0.018	0.330	0.457	
C	Thick lead	0.023	0.028	0.584	0.711	
c1	Thin lead	0.013	0.017	0.330	0.431	
CI	Thick lead	0.023	0.027	0.584	0.685	
	c2	0.045	0.055	1.143	1.397	
	D	0.340	0.380	8.636	9.652	
	D1	0.220	0.240	5.588	6.096	
D2		0.038	0.042	0.965	1.067	
D3		0.045	0.055	1.143	1.397	
	D4	0.044	0.052	1.118	1.321	
	E	0.380	0.410	9.652	10.414	
	E1	0.245	-	6.223	-	
	E2	0.355	0.375	9.017	9.525	
	E3	0.072	0.078	1.829	1.981	
	е	0.100	0.100 BSC 2.54 BS		BSC	
	К	0.045	0.055	1.143	1.397	
	L	0.575	0.625	14.605	15.875	
	L1	0.090	0.110	2.286	2.794	
L2		0.040	0.055	1.016	1.397	
	L3	0.050	0.070	1.270	1.778	
	L4	0.010 BSC		0.254 BSC		
	М	-	0.002	-	0.050	
ECN: T13-0707-Rev. K, 30-Sep-13 DWG: 5843						


Notes

- Plane B includes maximum features of heat sink tab and plastic.
 No more than 25 % of L1 can fall above seating plane by max. 8 mils.
- 3. Pin-to-pin coplanarity max. 4 mils.
- 4. *: Thin lead is for SUB, SYB.
 - Thick lead is for SUM, SYM, SQM.
- 5. Use inches as the primary measurement.

This feature is for thick lead.

RECOMMENDED MINIMUM PADS FOR D²PAK: 3-Lead

Recommended Minimum Pads Dimensions in Inches/(mm)

Disclaimer

All products due to improve reliability, function or design or for other reasons, product specifications and data are subject to change without notice.

Taiwan VBsemi Electronics Co., Ltd., branches, agents, employees, and all persons acting on its or their representatives (collectively, the "Taiwan VBsemi"), assumes no responsibility for any errors, inaccuracies or incomplete data contained in the table or any other any disclosure of any information related to the product.(www.VBsemi.com)

Taiwan VBsemi makes no guarantee, representation or warranty on the product for any particular purpose of any goods or continuous production. To the maximum extent permitted by applicable law on Taiwan VBsemi relinquished: (1) any application and all liability arising out of or use of any products; (2) any and all liability, including but not limited to special, consequential damages or incidental; (3) any and all implied warranties, including a particular purpose, non-infringement and merchantability guarantee.

Statement on certain types of applications are based on knowledge of the product is often used in a typical application of the general product VBsemi Taiwan demand that the Taiwan VBsemi of. Statement on whether the product is suitable for a particular application is non-binding. It is the customer's responsibility to verify specific product features in the products described in the specification is appropriate for use in a particular application. Parameter data sheets and technical specifications can be provided may vary depending on the application and performance over time. All operating parameters, including typical parameters must be made by customer's technical experts validated for each customer application. Product specifications do not expand or modify Taiwan VBsemi purchasing terms and conditions, including but not limited to warranty herein.

Unless expressly stated in writing, Taiwan VBsemi products are not intended for use in medical, life saving, or life sustaining applications or any other application. Wherein VBsemi product failure could lead to personal injury or death, use or sale of products used in Taiwan VBsemi such applications using client did not express their own risk. Contact your authorized Taiwan VBsemi people who are related to product design applications and other terms and conditions in writing.

The information provided in this document and the company's products without a license, express or implied, by estoppel or otherwise, to any intellectual property rights granted to the VBsemi act or document. Product names and trademarks referred to herein are trademarks of their respective representatives will be all.

Material Category Policy

Taiwan VBsemi Electronics Co., Ltd., hereby certify that all of the products are determined to be RoHS compliant and meets the definition of restrictions under Directive of the European Parliament 2011/65 / EU, 2011 Nian. 6. 8 Ri Yue restrict the use of certain hazardous substances in electrical and electronic equipment (EEE) - modification, unless otherwise specified as inconsistent.(www.VBsemi.com)

Please note that some documents may still refer to Taiwan VBsemi RoHS Directive 2002/95 / EC. We confirm that all products identified as consistent with the Directive 2002/95 / EC European Directive 2011/65 /.

Taiwan VBsemi Electronics Co., Ltd. hereby certify that all of its products comply identified as halogen-free halogen-free standards required by the JEDEC JS709A. Please note that some Taiwanese VBsemi documents still refer to the definition of IEC 61249-2-21, and we are sure that all products conform to confirm compliance with IEC 61249-2-21 standard level JS709A.