TinyLogic UHS Dual Unbuffered Inverter # NC7WZU04A #### Description The NC7WZU04A is a dual unbuffered inverter from **onsemi's** Ultra High Speed Series of TinyLogic in the space saving SC–88 6–lead package. The special purpose unbuffered circuit design is intended for crystal oscillator or analog applications. The internal circuit consists of only one–stage, the output, to allow for this part to be used in these oscillator or analog applications. The device is fabricated with advanced CMOS technology to achieve ultra high speed with high output drive while maintaining low static power dissipation over a very broad $V_{\rm CC}$ operating range. The device is specified to operate over the 1.65 V to 5.5 V $V_{\rm CC}$ range. The inputs are high impedance when $V_{\rm CC}$ is 0 V. Inputs tolerate voltages up to 5.5 V independent of $V_{\rm CC}$ operating voltage. #### **Features** - Space-Saving SC-88 6-Lead Package - Unbuffered for Crystal Oscillator and Analog Applications - Balanced Output Drive: ±8 mA at 4.5 V V_{CC} - Broad V_{CC} Operating Range: 1.65 V to 5.5 V - Low Quiescent Power: $I_{CC} < 1 \mu A$ at 5 V V_{CC} , $T_A = 25^{\circ}C$ - These Devices are Pb–Free, Halogen Free/BFR Free and are RoHS Compliant Figure 1. Logic Symbol ## MARKING DIAGRAMS SC-88 CASE 419B-02 BZU4 = Specific Device Code M = Data Code* ■ = Pb-Free Package (Note: Microdot may be in either location) *Date Code orientation and/or position may vary depending upon manufacturing location. #### ORDERING INFORMATION See detailed ordering, marking and shipping information in the package dimensions section on page 6 of this data sheet. # **Pin Configurations** Figure 2. SC-88 (Top View) AAA represents Product Code Top Mark - see ordering code NOTE: Orientation of Top Mark determines Pin One location. Reading the top product code mark left to right, Pin One is the lower left pin (see diagram). Figure 3. SC-88 Pin 1 Orientation # **PIN DEFINITIONS** | Pin Name | Description | |---------------------------------|-------------| | A ₁ , A ₂ | Data Inputs | | Y ₁ , Y ₂ | Outputs | # **FUNCTION TABLE** $(Y = \overline{A})$ | Input | Output | |-------|--------| | Α | Y | | L | Н | | Н | L | H = HIGH Logic Level L = LOW Logic Level #### **ABSOLUTE MAXIMUM RATINGS** | Symbol | Parame | Min | Max | Unit | | |-------------------------------------|---|------------------------------------|------|-----------------------|----| | V _{CC} | Supply Voltage | -0.5 | 6.5 | V | | | V _{IN} | DC Input Voltage | | -0.5 | 6.5 | V | | V _{OUT} | DC Output Voltage | | -0.5 | V _{CC} + 0.5 | V | | I _{IK} | DC Input Diode Current | V _{IN} < 0 V | - | -50 | mA | | I _{OK} | DC Output Diode Current | V _{OUT} < 0 V | - | -50 | mA | | | | V _{OUT} > V _{CC} | - | +50 | mA | | I _{OUT} | DC Output Current | - | ±50 | mA | | | I _{CC} or I _{GND} | DC V _{CC} / GND Current | | - | ±50 | mA | | T _{STG} | Storage Temperature | -65 | +150 | °C | | | TJ | Junction Temperature Under Bias | | - | 150 | °C | | T _L | Junction Lead Temperature (Soldering, 10 Seconds) | | - | 260 | °C | | P _D | Power Dissipation in Still Air | SC-88 | - | 332 | mW | Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected. #### **RECOMMENDED OPERATING CONDITIONS** | Symbol | Parameter | Conditions | Min | Max | Unit | |-------------------|-------------------------------|------------|------|-----------------|------| | V _{CC} | Supply Voltage Operating | | 1.65 | 5.5 | V | | | Supply Voltage Data Retention | | 1.5 | 5.5 | | | V _{IN} | Input Voltage | | 0 | 5.5 | V | | V _{OUT} | Output Voltage | | 0 | V _{CC} | V | | T _A | Operating Temperature | | -40 | +85 | °C | | $\theta_{\sf JA}$ | Thermal Resistance | SC-88 | - | 377 | °C/W | Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability. 1. Unused inputs must be held HIGH or LOW. They may not float. # DC ELECTRICAL CHARACTERISTICS | | | | | | Т, | գ = + 25 ° | С | T _A = -40 | to +85°C | | |---------------------|--------------------------------|---------------------|--|---------------------------|---------------------|-------------------|----------------------|----------------------|----------------------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | | Min | Тур | Max | Min | Max | Unit | | V _{IH} | HIGH Level Input | 1.8 to 2.7 | | | | _ | - | 0.85 V _{CC} | - | V | | | Voltage | 3.0 to 5.5 | 1 | | 0.8 V _{CC} | - | - | 0.8 V _{CC} | - | 1 | | V _{IL} | | | | | _ | - | 0.15 V _{CC} | - | 0.15 V _{CC} | V | | | Voltage | 3.0 to 5.5 | 1 | | _ | - | 0.2 V _{CC} | - | 0.2 V _{CC} | 1 | | V _{OH} | HIGH Level Output | 1.65 | $V_{IN} = V_{IL}$ | I _{OH} = -100 μA | 1.55 | 1.65 | - | 1.55 | - | V | | | Voltage | 1.8 | 1 | | 1.6 | 1.79 | - | 1.6 | - | 1 | | | | 2.3 | 1 | | 2.1 | 2.29 | - | 2.1 | - | 1 | | | | 3.0 | 1 | | 2.7 | 2.99 | - | 2.7 | - | 1 | | | | 4.5 | 1 | | 4.0 | 4.48 | - | 4.0 | - | 1 | | | | 1.65 | V _{IN} = GND | I _{OH} = -2 mA | 1.29 | 1.52 | - | 1.29 | - | V | | | | 2.3 | | I _{OH} = -2 mA | 1.9 | 2.19 | - | 1.9 | - | | | | | 3.0 | | I _{OH} = -4 mA | 2.4 | 2.82 | - | 2.4 | - | | | | | 3.0 | | I _{OH} = -6 mA | 2.3 | 2.73 | - | 2.3 | - | | | | | 4.5 | | I _{OH} = -8 mA | 3.8 | 4.24 | - | 3.8 | - | | | | LOW Level Output | 1.65 | V _{IN} = V _{IH} | I _{OL} = 100 μA | _ | 0.01 | 0.2 | - | 0.2 | ٧ | | | Voltage | 1.8 | | | - | 0.01 | 0.2 | - | 0.2 | 1 | | | | 2.3 | | | _ | 0.01 | 0.2 | - | 0.2 | | | | | 3.0 | | | - | 0.01 | 0.3 | - | 0.3 | | | | | 4.5 | | | _ | 0.01 | 0.5 | - | 0.5 | | | | | 1.65 | V _{IN} = V _{CC} | I _{OL} = 2 mA | _ | 0.10 | 0.24 | - | 0.24 | ٧ | | | | 2.3 | | I _{OL} = 2 mA | _ | 0.12 | 0.3 | - | 0.3 | 1 | | | | 3.0 | | I _{OL} = 4 mA | - | 0.19 | 0.4 | - | 0.4 | | | | | 3.0 | I _{OL} = | I _{OL} = 6 mA | - | 0.29 | 0.55 | - | 0.55 | | | | | 4.5 | 1 | I _{OL} = 8 mA | - | 0.29 | 0.55 | - | 0.55 | | | I _{IN} | Input Leakage
Current | 1.65 to 5.5 | V _{IN} = 5.5 V, | GND | - | - | ±0.1 | - | ±1.0 | μΑ | | I _{CC} | Quiescent Supply
Current | 1.65 to 5.5 | V _{IN} = 5.5 V, GND | | - | - | 1.0 | - | 10 | μΑ | | I _{CCPEAK} | Peak Supply | 1.8 | V _{OUT} = Ope | n
for Dool ! | - | 0.2 | - | - | - | mA | | | Current in Analog
Operation | 2.5 | V _{IN} = Adjust for Peak I _{CC}
Current | | _ | 2 | - | - | - | 1 | | | | 3.3 | 1 | | _ | 5 | - | - | - | 1 | | | 5.0 | | | - | 15 | - | - | - | 1 | | #### **AC ELECTRICAL CHARACTERISTICS** | | | | | T _A = +25°C | | T _A = -40 | to +85°C | | | |-----------------|---|---------------------|-------------------------|------------------------|-----|----------------------|----------|------|------| | Symbol | Parameter | V _{CC} (V) | Conditions | Min | Тур | Max | Min | Max | Unit | | | t _{PLH} , t _{PHL} Propagation Delay (Figure 4, 5) | 1.65 | C _L = 15 pF, | - | 5.5 | 9.8 | - | 11.0 | ns | | | | 1.8 | $R_L = 1 M\Omega$ | - | 4.6 | 8.1 | - | 8.9 | | | | 2.5 ±0.2 |] | - | 3.3 | 5.7 | - | 6.3 | | | | | | 3.3 ±0.3 | | - | 2.7 | 4.1 | - | 4.5 | | | | | 5.0 ±0.5 |] | - | 2.2 | 3.3 | - | 3.6 | | | | | 3.3 ±0.3 | C _L = 50 pF, | - | 4.0 | 6.4 | - | 7.0 | | | | | 5.0 ±0.5 | $R_L = 500 \Omega$ | - | 3.4 | 5.6 | - | 6.2 | | | C _{IN} | Input Capacitance | 0 | | - | 3 | - | - | _ | pF | | C _{PD} | Power Dissipation Capacitance | 3.3 | (Note 2) | - | 3.5 | - | - | _ | pF | | (Figure 6) | 5.0 | | - | 5.5 | - | - | _ | | | C_{PD} is defined as the value of the internal equivalent capacitance which is derived from dynamic operating current consumption (I_{CCD}) at no output loading and operating at 50% duty cycle. C_{PD} is related to I_{CCD} dynamic operating current by the expression: I_{CCD} = (C_{PD}) (V_{CC}) (f_{IN}) + (I_{CC}static). # **AC Loading and Waveforms** $^{\star}C_L$ includes load and stray capacitance. Input PRR = 1.0 MHz, t_W = 500 ns. Figure 4. AC Test Circuit Application Note: When operating the NC7WZU04A's unbuffered output stage in its linear range, as in oscillator applications, care must be taken to observe maximum power rating for the device and package. The high drive nature of the design of the output stage will result in substantial simultaneous conduction currents when the stage is in the linear region. See the I_{C-CPEAK} specification on page NO TAG. $\begin{aligned} & \text{Input} = \text{AC Waveform; } t_r = t_f = 1.8 \text{ ns.} \\ & \text{PRR} = 10 \text{ MHz; Duty Cycle} = 50\%. \end{aligned}$ Figure 6. I_{CCD} Test Circuit Figure 5. AC Waveforms # **DEVICE ORDERING INFORMATION** | Device | Top Mark | Packages | Shipping [†] | | |--------------|----------|----------|-----------------------|--| | NC7WZU04AP6X | ZU4 | SC-88 | 3000 / Tape & Reel | | [†]For information on tape and reel specifications, including part orientation and tape sizes, please refer to our Tape and Reel Packaging Specifications Brochure, BRD8011/D. MicroPak is trademark of Semiconductor Components Industries, LLC (SCILLC) or its subsidiaries in the United States and/or other countries. #### PACKAGE DIMENSIONS ## SC-88/SC70-6/SOT-363 CASE 419B-02 **ISSUE Y** - NOTES: 1. DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. - DIMENSIONING AND TOLERANCING PER ASME Y14.5M, 1994. CONTROLLING DIMENSION: MILLIMETERS. DIMENSIONS DAND E 1 DO NOT INCLUDE MOLD FLASH, PROTRUSIONS, OR GATE BURRS. MOLD FLASH, PROTRUSIONS, OR GATE BURRS SHALL NOT EXCEED 0.20 PER END. DIMENSIONS DAND E1 AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY AND DATUM H. DATUMS A AND B ARE DETERMINED AT DATUM H. DIMENSIONS DAND CAPPLY TO THE FLAT SECTION OF THE LEAD BETWEEN 0.08 AND 0.15 FROM THE TIP. DIMENSION DOES NOT INCLUDE DAMBAR PROTRUSION. ALLOWABLE DAMBAR PROTRUSION SHALL BE 0.08 TOTAL IN EXCESS OF DIMENSION DAT MAXIMUM MATERIAL CONDI- - EXCESS OF DIMENSION 6 AT MAXIMUM MATERIAL CONDITION. THE DAMBAR CANNOT BE LOCATED ON THE LOWER | | MILLIMETERS | | | INCHES | | | |-----|-------------|---------|------|-----------|-------|-------| | DIM | MIN | NOM | MAX | MIN | NOM | MAX | | Α | | | 1.10 | | | 0.043 | | A1 | 0.00 | | 0.10 | 0.000 | | 0.004 | | A2 | 0.70 | 0.90 | 1.00 | 0.027 | 0.035 | 0.039 | | b | 0.15 | 0.20 | 0.25 | 0.006 | 0.008 | 0.010 | | С | 0.08 | 0.15 | 0.22 | 0.003 | 0.006 | 0.009 | | D | 1.80 | 2.00 | 2.20 | 0.070 | 0.078 | 0.086 | | E | 2.00 | 2.10 | 2.20 | 0.078 | 0.082 | 0.086 | | E1 | 1.15 | 1.25 | 1.35 | 0.045 | 0.049 | 0.053 | | е | (| 0.65 BS | С | 0.026 BSC | | | | L | 0.26 | 0.36 | 0.46 | 0.010 | 0.014 | 0.018 | | L2 | | 0.15 BS | C | 0.006 BSC | | | | aaa | 0.15 | | | | 0.006 | | | bbb | 0.30 | | | 0.012 | | | | ccc | 0.10 | | | 0.004 | | | | ddd | | 0.10 | | | 0.004 | | #### **RECOMMENDED SOLDERING FOOTPRINT*** *For additional information on our Pb-Free strategy and soldering details, please download the **onsemi** Soldering and Mounting Techniques Reference Manual, SOLDERRM/D. onsemi, ONSEMI, and other names, marks, and brands are registered and/or common law trademarks of Semiconductor Components Industries, LLC dba "onsemi" or its affiliates and/or subsidiaries in the United States and/or other countries. onsemi owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of onsemi's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. onsemi reserves the right to make changes at any time to any products or information herein, without notice. The information herein is provided "as-is" and onsemi makes no warranty, representation or guarantee regarding the accuracy of the information, product features, availability, functionality, or suitability of its products for any particular purpose, nor does **onsemi** assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. Buyer is responsible for its products and applications using **onsemi** products, including compliance with all laws, regulations and safety requirements or standards, regardless of any support or applications information provided by **onsemi**. "Typical" parameters which may be provided in **onsemi** data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. **onsemi** does not convey any license under any of its intellectual property rights nor the rights of others. **onsemi** products are not designed, intended, or authorized for use as a critical component in life support systems or any FDA Class 3 medical devices or medical devices with a same or similar classification in a foreign jurisdiction or any devices intended for implantation in the human body. Should Buyer purchase or use **onsemi** products for any such unintended or unauthorized application, Buyer shall indemnify and hold **onsemi** and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that **onsemi** was negligent regarding the design or manufacture of the part. **onsemi** is an Equal Opportunity/Affirmative Action Employer. This literature is subject to all applicable copyright laws and is not for resale in any manner. #### ADDITIONAL INFORMATION TECHNICAL PUBLICATIONS: $\textbf{Technical Library:} \ \underline{www.onsemi.com/design/resources/technical-documentation}$ onsemi Website: www.onsemi.com ONLINE SUPPORT: www.onsemi.com/support For additional information, please contact your local Sales Representative at www.onsemi.com/support/sales