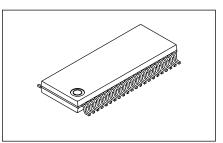
LV8729V

BI-CMOSIC PWM Constant-Current Control Stepper Motor Driver


Overview

The LV8729V is a PWM current-controlled microstep bipolar stepper motor driver.

This driver can perform eight times of excitation of the second phase to 32W1-second phase and can drive simply by the CLK input.

Function

- Single-channel PWM current control stepper motor driver.
- BiCDMOS process IC.
- Output on-resistance (upper side : 0.35Ω ; lower side : 0.3Ω ; total of upper and lower : 0.65Ω ; Ta = 25°C, IO = 1.8A)
- 2-phase, 1-2 phase, W1-2 phase, 2W1-2 phase, 4W1-2 phase, 8W1-2 phase, 16W1-2 phase, 32W1-2 phase excitation are selectable.
- Advance the excitation step with the only step signal input.
- Available forward reverse control.
- Over current protection circuit.
- Thermal shutdown circuit.
- Input pull down resistance
- With reset pin and enable pin.

SSOP44K (275mil)

Specifications

Absolute Maximum Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Maximum supply voltage	VM max	VM , VM1 , VM2	36	V
Maximum output current	I _O max	Per 1ch	1.8	А
Maximum logic input voltage	V _{IN} max	ST , MD1 , MD2 , MD3 , OE , RST , FR ,	6	V
Maximum VREF input voltage	VREF max		6	V
Maximum MO input voltage	V _{MO} max		6	V
Maximum DOWN input voltage	V _{DOWN} max		6	V
Allowable power dissipation	Pd max	*	3.85	W
Operating temperature	Topr		-30 to +85	°C
Storage temperature	Tstg		-55 to +150	°C

* Specified circuit board : 90.0mm×90.0mm×1.6mm, glass epoxy 2-layer board, with backside mounting.

Caution 1) Absolute maximum ratings represent the value which cannot be exceeded for any length of time.

Caution 2) Even when the device is used within the range of absolute maximum ratings, as a result of continuous usage under high temperature, high current, high voltage, or drastic temperature change, the reliability of the IC may be degraded. Please contact us for the further details.

Stresses exceeding those listed in the Maximum Ratings table may damage the device. If any of these limits are exceeded, device functionality should not be assumed, damage may occur and reliability may be affected.

ORDERING INFORMATION

See detailed ordering and shipping information on page 21 of this data sheet.

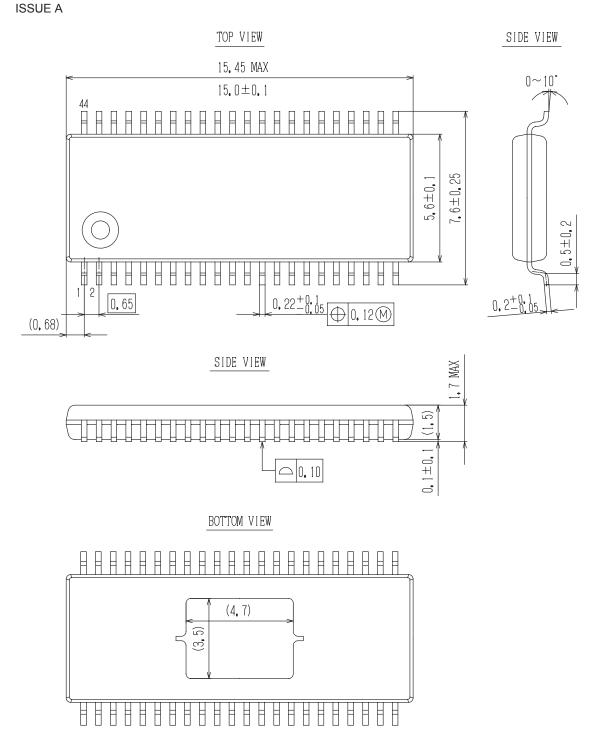
Allowable Operating Ratings at Ta = 25°C

Parameter	Symbol	Conditions	Ratings	Unit
Supply voltage range	VM	VM , VM1 , VM2	9 to 32	V
Logic input voltage	VIN	ST , MD1 , MD2 , MD3 , OE , RST , FR , STEP	0 to 5	V
VREF input voltage range	VREF		0 to 3	V

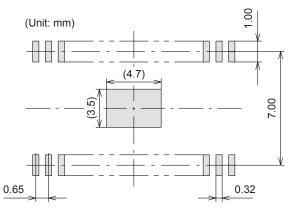
Functional operation above the stresses listed in the Recommended Operating Ranges is not implied. Extended exposure to stresses beyond the Recommended Operating Ranges limits may affect device reliability.

Electrical Characteristics at Ta = 25°C, VM = 24V, VREF = 1.5V

Darama	tor	Cumbal	Conditions		Ratings		l lait
Parame	ter	Symbol	Conditions	min	typ	max	Unit μA mA °C μA μA V V V V V V V μA mV mV Hz V V V V V V V Ω
Standby mode curre	nt drain	l _M st	ST = "L" , VM+VM1+VM2		70	100	μA
Current drain		IM	ST = "H", OE = "H", no load VM+VM1+VM2		3.3	4.6	mA
Thermal shutdown te	emperature	TSD	Design guarantee	150	180	200	°C
Thermal hysteresis v	vidth	∆TSD	Design guarantee		40		°C
Logic pin input curre	nt	I _{IN} L	ST , MD1 , MD2 , MD3 , OE , RST , FR , STEP , V _{IN} = 0.8V	3	8	15	μA
		I _{IN} H	ST , MD1 , MD2 , MD3 , OE , RST , FR , STEP , V _{IN} = 5V	30	50	70	μA
Logic input voltage	High	V _{IN} H	ST , MD1 , MD2 , MD3 , OE , RST , FR ,	2.0		5.0	V
	Low	V _{IN} L	STEP	0.8	V		
Chopping frequency		Fch	Cosc1 = 100pF	70	100	130	kHz
OSC1 pin charge/dis	scharge current	losc1		7	10	13	μA
Chopping oscillation circuit		Vtup1		0.8	1	1.2	V
threshold voltage		Vtdown1		0.3	0.5	0.7	V
VREF pin input volta	ige	Iref	VREF = 1.5V	-0.5			μA
DOWN output residu	ial voltagr	V _O 1DOWN	ldown = 1mA		40	100	mV
MO pin residual volta	age	V _O 1MO	Imo = 1mA		40	100	mV
Hold current switchir	ng frequency	Fdown	Cosc2 = 1500pF	1.12	1.6	2.08	Hz
Hold current switchir	ng frequency	Vtup2		0.8	1	1.2	V
threshold voltage		Vtdown2		0.3	0.5	0.7	V
VREG1 output voltage	ge	Vreg1		4.7	5	5.3	V
VREG2 output voltag	ge	Vreg2	VM	18	19	20	V
Output on-resistance	9	Ronu	I _O = 1.8A, high-side ON resistance		0.35	0.455	Ω
		Rond	I _O = 1.8A, low-side ON resistance		0.3	0.39	Ω
Output leakage curre	ent	l _O leak	V _M = 36V			50	μA
Diode forward voltag	le	VD	I _D = -1.8A		1	1.4	V
Current setting refere	ence voltage	VRF	VREF = 1.5V, Current ratio 100%	0.285	0.3	0.315	V


Product parametric performance is indicated in the Electrical Characteristics for the listed test conditions, unless otherwise noted. Product performance may not be indicated by the Electrical Characteristics if operated under different conditions.

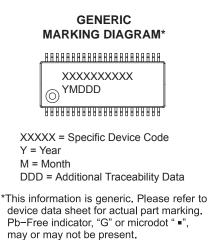
Package Dimensions


unit : mm (typ)

SSOP44K (275mil) Exposed Pad

CASE 940ÅF

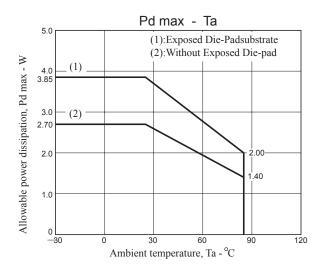
SOLDERING FOOTPRINT*



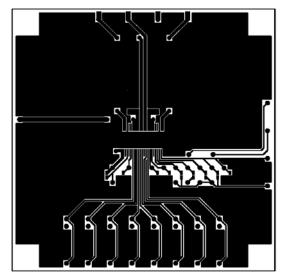
NOTES:

- 1. The measurements are for reference only, and unable to guarantee.
- 2. Please take appropriate action to design the actual Exposed Die Pad and Fin portion.
- 3. After setting, verification on the product must be done.

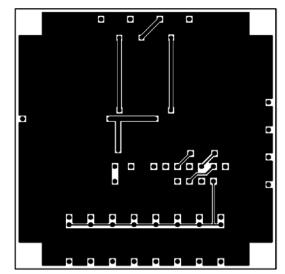
(Although there are no recommended design for Exposed Die Pad and Fin portion Metal mask and shape for Through–Hole pitch (Pitch & Via etc), checking the soldered joint condition and reliability verification of soldered joint will be needed. Void = gradient = insufficient thickness of soldered joint or bond degradation could lead IC destruction because thermal conduction to substrate becomes poor.)


*For additional information on our Pb–Free strategy and soldering details, please download the ON Semiconductor Soldering and Mounting Techniques Reference Manual, SOLDERRM/D.

Pin Assignment


I		
VM 1	\bigcirc	44 OUT1A
NC 2	\bigcirc	43 OUT1A
VREG2 3		42 PGND1
NC 4		41 NC
VREG1 5		40 NC
ST 6		39 VM1
MD1 7		38 VM1
MD2 8		37 RF1
MD3 9		36 RF1
OE 10		35 OUT1B
RST 11	LV8729V	34 OUT1B
NC 12	LV0/29V	33 OUT2A
FR 13		32 OUT2A
STP 14		31 RF2
OSC1 15		30 RF2
OSC2 16		29 VM2
NC 17		28 VM2
EMO 18		27 NC
DOWN 19		26 NC
MO 20		25 PGND2
VREF 21		24 OUT2B
SGND 22		23 OUT2B

Top view



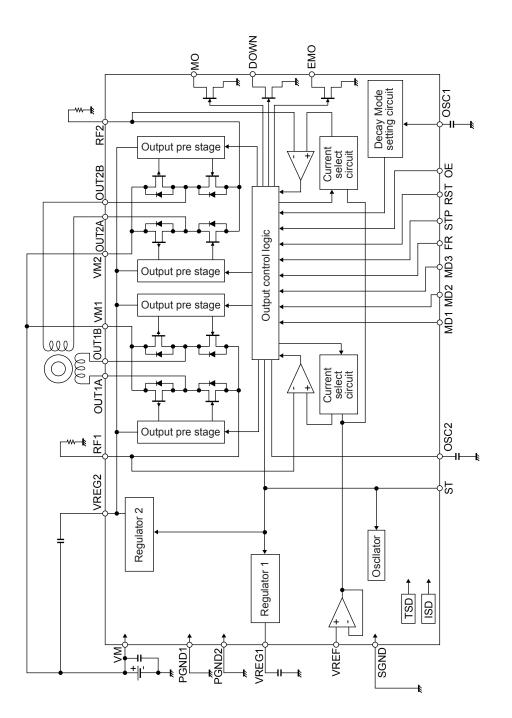
Substrate Specifications (Substrate recommended for operation of LV8729V)

Size: $90mm \times 90mm \times 1.6mm$ (two-layer substrate [2S0P])Material: Glass epoxyCopper wiring density: L1 = 85% / L2 = 90%

L1 : Copper wiring pattern diagram

L2 : Copper wiring pattern diagram

Cautions


1) The data for the case with the Exposed Die-Pad substrate mounted shows the values when 90% or more of the Exposed Die-Pad is wet.

2) For the set design, employ the derating design with sufficient margin.

Stresses to be derated include the voltage, current, junction temperature, power loss, and mechanical stresses such as vibration, impact, and tension.

- Accordingly, the design must ensure these stresses to be as low or small as possible.
- The guideline for ordinary derating is shown below :
- (1)Maximum value 80% or less for the voltage rating
- (2)Maximum value 80% or less for the current rating
- (3)Maximum value 80% or less for the temperature rating

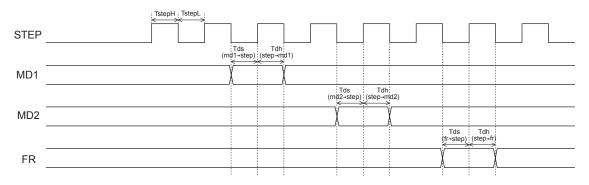
3) After the set design, be sure to verify the design with the actual product. Confirm the solder joint state and verify also the reliability of solder joint for the Exposed Die-Pad, etc. Any void or deterioration, if observed in the solder joint of these parts, causes deteriorated thermal conduction, possibly resulting in thermal destruction of IC. **Block Diagram**

Pin F	unctions	5	
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
7 8 9 10 11 13 14	MD1 MD2 MD3 OE RST FR STP	Excitation mode switching pin Excitation mode switching pin Excitation mode switching pin Output enable signal input pin Reset signal input pin Forward / Reverse signal input pin Step clock pulse signal input pin	VREG1O
6	ST	Chip enable pin.	VREG1 Ο
23, 24 25 28, 29 30, 31 32, 33 34, 35 36, 37 38, 39 42 43, 44	OUT2B PGND2 V _M 2 RF2 OUT2A OUT1B RF1 V _M 1 PGND1 OUT1A	Channel 2 OUTB output pin. Channel 2 Power system ground Channel 2 motor power supply connection pin. Channel 2 current-sense resistor connection pin. Channel 2 OUTA output pin. Channel 1 OUTB output pin. Channel 1 current-sense resistor connection pin. Channel 1 motor power supply pin. Channel 1 Power system ground Channel 1 OUTA output pin.	$\begin{array}{c} 33339\\ 2829\\ \hline \\ 4344\\ \hline \\ 4344\\ \hline \\ 3233\\ \hline \\ 43435\\ \hline \\ 2324\\ \hline \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$
21	VREF	Constant-current control reference voltage input pin.	VREG1 0

Continued on next page.

	from preceding p	page.	
Pin No.	Pin Name	Pin Functtion	Equivalent Circuit
3	VREG2	Internal regulator capacitor connection pin.	
5	VREG1	Internal regulator capacitor connection pin.	
18 19 20	EMO DOWN MO	Over-current detection alarm output pin. Holding current output pin. Position detecting monitor pin.	VREG1 0
15 16	OSC1 OSC2	Copping frequency setting capacitor connection pin. Holding current detection time setting capacitor connection pin.	

Reference describing operation


(1) Stand-by function

When ST pin is at low levels, the IC enters stand-by mode, all logic is reset and output is turned OFF. When ST pin is at high levels, the stand-by mode is released.

(2) STEP pin function

In	put	Operating mode
ST	STP	
Low	*	Standby mode
High		Excitation step proceeds
High		Excitation step is kept

(3) Input Timing

TstepH/TstepL : Clock H/L pulse width (min 500ns) Tds : Data set-up time (min 500ns) Tdh : Data hold time (min 500ns)

(4) Excitation setting method

Set the excitation setting as shown in the following table by setting MD1 pin, MD2 pin and MD3 pin.

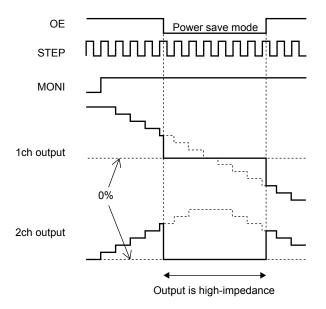
	Input		Mode	Initial position			
MD3	MD2	MD1	(Excitation)	1ch current	2ch current		
Low	Low	Low	2 phase	100%	-100%		
Low	Low	High	1-2 phase	100%	0%		
Low	High	Low	W1-2 phase	100%	0%		
Low	High	High	2W1-2 phase	100%	0%		
High	Low	Low	4W1-2 phase	100%	0%		
High	Low	High	8W1-2 phase	100%	0%		
High	High	Low	16W1-2 phase	100%	0%		
High	High	High	32W1-2 phase	100%	0%		

The initial position is also the default state at start-up and excitation position at counter-reset in each excitation mode.

(5) Output current setting

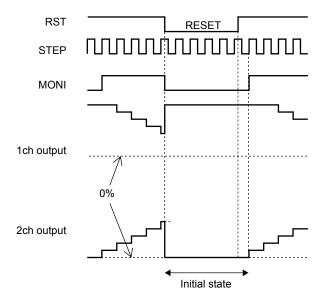
Output current is set shown below by the VREF pin (applied voltage) and a resistance value between RF1(2) pin and GND.

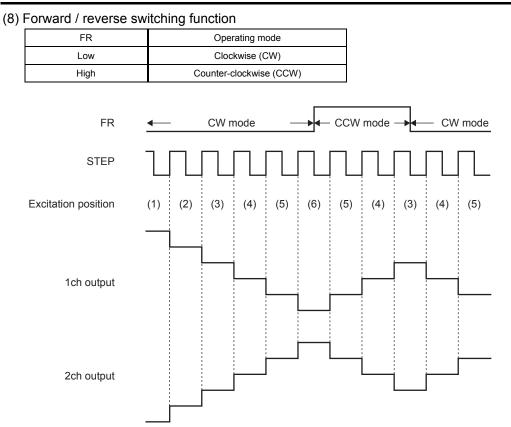
 $I_{OUT} = (VREF / 5) / RF1 (2)$ resistance


* The setting value above is a 100% output current in each excitation mode.

(Example) When VREF = 1.1V and RF1 (2) resistance is 0.22Ω , the setting is shown below.

 $I_{OUT} = (1.1V / 5) / 0.22\Omega = 1.0A$


(6) Output enable function


When the OE pin is set Low, the output is forced OFF and goes to high impedance. However, the internal logic circuits are operating, so the excitation position proceeds when the STP is input. Therefore, when OE pin is returned to High, the output level conforms to the excitation position proceeded by the STP input.

(7) Reset function

When the RST pin is set Low, the output goes to initial mode and excitation position is fixed in the initial position for STP pin and FR pin input. MO pin outputs at low levels at the initial position. (Open drain connection)

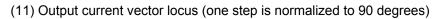
The internal D/A converter proceeds by a bit on the rising edge of the step signal input to the STP pin. In addition, CW and CCW mode are switched by FR pin setting.

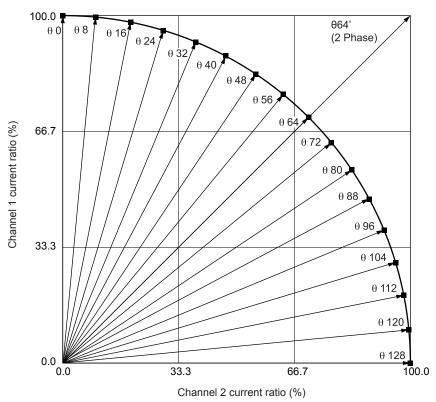
In CW mode, the channel 2 current phase is delayed by 90° relative to the channel 1 current.

In CCW mode, the channel 2 current phase is advanced by 90° relative to the channel 1 current.

(9) EMO, DOWN, MO output pin

The output pin is open -drain connection. When it becomes prescribed, it turns on, and each pin outputs the Low level.


Pin state	EMO	DOWN	MO
Low	At detection of over-current	Holding current state	Initial position
OFF	Normal state	Normal state	Non initial position


(10) Chopping frequency setting function

Chopping frequency is set as shown below by a capacitor between OSC1 pin and GND. $Fcp = 1 / (Cosc1 / 10 \times 10^{-6}) (Hz)$

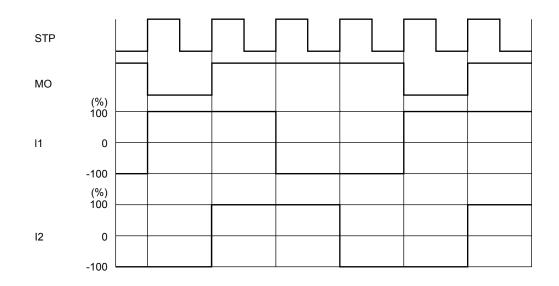
(Example) When Cosc1 = 200pF, the chopping frequency is shown below. Fcp = $1 / (200 \times 10^{-12} / 10 \times 10^{-6}) = 50$ (kHz)

LV8729V

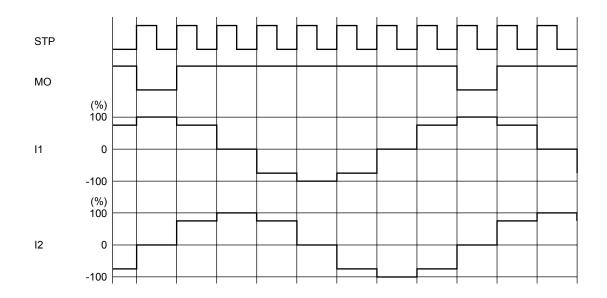
Current setting ratio in each excitation mode

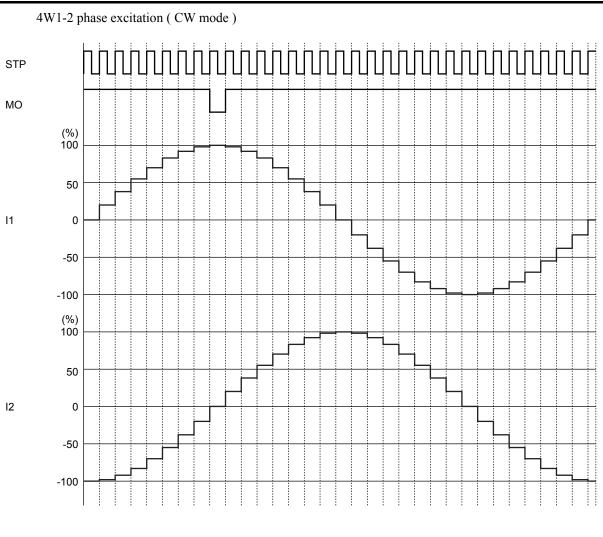
		ohase(%)		phase(%)	8W1_2 r	ohase(%)	4W1_2 r	hase(%)	2W1-2 n	hase (%)	W1_2 nl	nase (%)	1-2 nh	ase (%)	2 nha	se (%)
STEP	1ch	2ch	10w1-2	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1-2 pin	2ch	1 ch	2ch
00	100	0	100	0	100	0	100	0	100	0	100	0	100	0	Ten	2011
θ1	100	1	100	0	100	0	100	0	100	0	100	0	100	0		
θ2	100	2	100	2												
02	100	4	100													
03	100	5	100	5	100	5										
θ5	100	6		-		-										
θ6	100	7	100	7												
θ7	100	9														
θ8	100	10	100	10	100	10	100	10								
θ9	99	11														
θ10	99	12	99	12												
θ11	99	13														
θ12	99	15	99	15	99	15										
θ13	99	16														
θ14	99	17	99	17												
θ15	98	18														
θ16	98	20	98	20	98	20	98	20	98	20						
θ17	98	21														
θ18	98	22	98	22												
θ19	97	23														
θ20	97	24	97	24	97	24										
θ21	97	25														
θ22	96	27	96	27												
θ23	96	28														
θ24	96	29	96	29	96	29	96	29								
θ25	95	30														

Continued on next page.

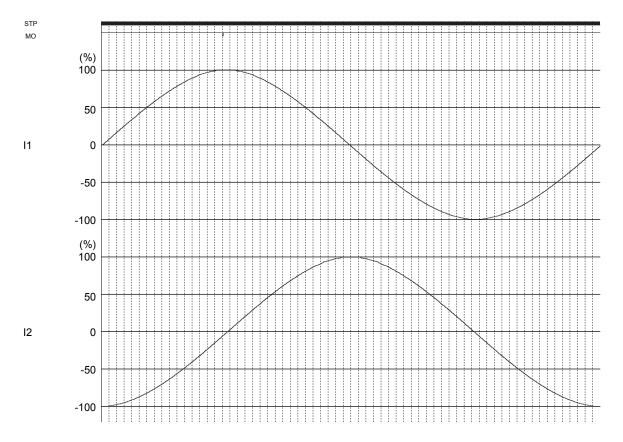

LV872	29V
-------	-----

Continue	ed from pre	eceding pa	ge.													
STEP	32W1-	2 phase	16W1-	2 phase	8W1-2	2 phase	4W1-2	2 phase	2W1-2	phase	W1-2 pl	hase (%)	1-2 pha	ase (%)	2 pha	se (%)
	1ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch	1 ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
θ26	95	31	95	31												
θ27	95	33														
θ28 020	94	34	94	34	94	34										
θ29 θ30	94 93	35 36	93	36												
θ30 θ31	93	37	95	30												
031	92	38	92	38	92	38	92	38	92	38	92	38				
032	92	39	,2	50	,2	50	,2	50	,2	50	,2	50				
θ34	91	41	91	41												
θ35	91	42														
θ36	90	43	90	43	90	43										
θ37	90	44														
θ38	89	45	89	45												
θ39	89	46														
θ40	88	47	88	47	88	47	88	47								
θ41	88	48	07	40							1					
θ42 θ43	87 86	49 50	87	49							<u> </u>					
043 044	86	50	86	51	86	51				l				l		
044 045	80	52	00	51	00	51					1		-	-		
θ46	84	53	84	53												
θ47	84	55									1	İ				İ
θ48	83	56	83	56	83	56	83	56	83	56						
049	82	57														
θ50	82	58	82	58												
θ51	81	59														
θ52	80	60	80	60	80	60										
θ53	80	61	70	(2)												
θ54 055	79	62	79	62												
θ55 θ56	78 77	62 63	77	63	77	63	77	63								
θ57	77	64	//	03	//	03	//	03								
θ58	76	65	76	65												
θ59	75	66														
θ60	74	67	74	67	74	67										
θ61	73	68														
θ62	72	69	72	69												
θ63	72	70														
θ64	71	71	71	71	71	71	71	71	71	71	71	71	71	71	100	100
θ65	70	72	60	=-												
066	69	72	69	72												
θ67 θ68	68	73	67	74	67	74					<u> </u>					
θ68 θ69	67 66	74 75	67	74	67	74										
θ70	65	76	65	76							1					
θ71	64	77			1	1	1	1	1		t	1			1	1
θ72	63	77	63	77	63	77	63	77								
θ73	62	78														
θ74	62	79	62	79												
θ75	61	80									ļ					
θ76	60	80	60	80	60	80										
θ77	59	81														
θ78 070	58	82	58	82												
θ79 080	57	82	56	07	56	07	56	07	54	07	<u> </u>					
080 081	56 55	83 84	56	83	56	83	56	83	56	83						
081	53	84	53	84							1					
θ83	52	85		01						-						
θ84	51	86	51	86	51	86	1	1	1		t	1			1	1
085	50	86														
θ86	49	87	49	87												
θ87	48	88														
θ88	47	88	47	88	47	88	47	88								
θ89	46	89														
090	45	89	45	89							L	l				l

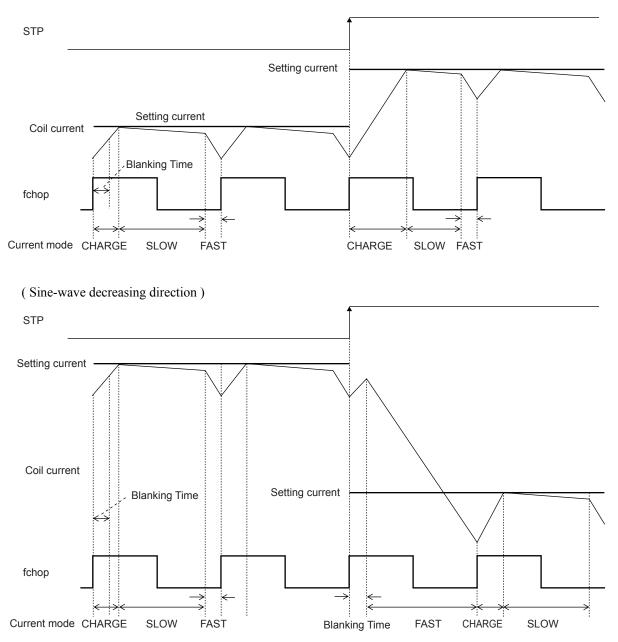

Continued on next page.


Continue	_	eceding pa							1		1					
STEP	32W1-2 phase		16W1-2 phase		8W1-2 phase		4W1-2 phase		2W1-2 phase		W1-2 phase (%)		1-2 phase (%)		2 phase (%)	
001	1ch	2ch	1ch	2ch	1 ch	2ch	1ch	2ch	1 ch	2ch	1ch	2ch	1ch	2ch	1ch	2ch
091	44	90	10		12											
θ92	43	90	43	90	43	90										
θ93	42	91														
θ94	41	91	41	91												
θ95	39	92														
θ96	38	92	38	92	38	92	38	92	38	92	38	92				
θ97	37	93														
θ98	36	93	36	93												
θ99	35	94														
θ100	34	94	34	94	34	94										
θ101	33	95														
θ102	31	95	31	95												
θ103	30	95														
θ104	29	96	29	96	29	96	29	96								
θ105	28	96														
θ106	27	96	27	96												
θ107	25	97														
0108	24	97	24	97	24	97										
θ109	23	97														
θ110	22	98	22	98												
θ111	21	98														
θ112	20	98	20	98	20	98	20	98	20	98						
θ113	18	98														
θ114	17	99	17	99												
θ115	16	99														
θ116	15	99	15	99	15	99										
θ117	13	99									ł	1				1
0117	12	99	12	99							1	1				
θ119	11	99				1					ł	1				1
θ120	10	100	10	100	10	100	10	100			1	1				
θ120	9	100	10	100	10	100	10	100			<u> </u>					
θ122	7	100	7	100												
θ123	6	100	,	100		1					1	1				
θ123 θ124	5	100	5	100	5	100					<u> </u>					
θ124 θ125	4	100	5	100	5	100					<u> </u>					
	1	100	2	100		<u> </u>					<u> </u>					
θ126 0127	2		2	100		<u> </u>					<u> </u>	<u> </u>				
θ127	1	100	0	100	0	100	0	100	0	100	0	100	0	100		<u> </u>
θ128	0	100	0	100	0	100	0	100	0	100	0	100	0	100		

(12) Current wave example in each excitation mode (2 phase, 1-2 phase, 4W1-2 phase, 32W1-2 phase) 2-phase excitation (CW mode)



1-2 phase excitation (CW mode)



(13) Current control operation

(Sine-wave increasing direction)

Each of current modes operates with the follow sequence.

 \cdot The IC enters CHARGE mode at a rising edge of the chopping oscillation. (A period of CHARGE mode (Blanking Time) is forcibly present in approximately 1µs, regardless of the current value of the coil current (ICOIL) and set current (IREF)).

· In a period of Blanking Time, the coil current (ICOIL) and the setting current (IREF) are compared.

If an ICOIL < IREF state exists during the charge period:

The IC operates in CHARGE mode until ICOIL \geq IREF. After that, it switches to SLOW DECAY mode and then switches to FAST DECAY mode in the last approximately 1µs of the period.

If no ICOIL < IREF state exists during the charge period:

The IC switches to FAST DECAY mode and the coil current is attenuated with the FAST DECAY operation until the end of a chopping period.

The above operation is repeated. Normally, in the sine wave increasing direction the IC operates in SLOW (+ FAST) DECAY mode, and in the sine wave decreasing direction the IC operates in FAST DECAY mode until the current is attenuated and reaches the set value and the IC operates in SLOW (+ FAST) DECAY mode.

(14) Output short-circuit protection circuit

Built-in output short-circuit protection circuit makes output to enter in stand-by mode. This function prevents the IC from damaging when the output shorts circuit by a voltage short or a ground short, etc. When output short state is detected, short-circuit detection circuit state the operating and output is once turned OFF. Subsequently, the output is turned ON again after the timer latch period (typ. 256μ s). If the output remains in the short-circuit state, turn OFF the output, fix the output to the wait mode, and turn ON the EMO output.

When output is fixed in stand-by mode by output short protection circuit, output is released the latch by setting ST ="L".

(15) Open-drain pin for switching holding current

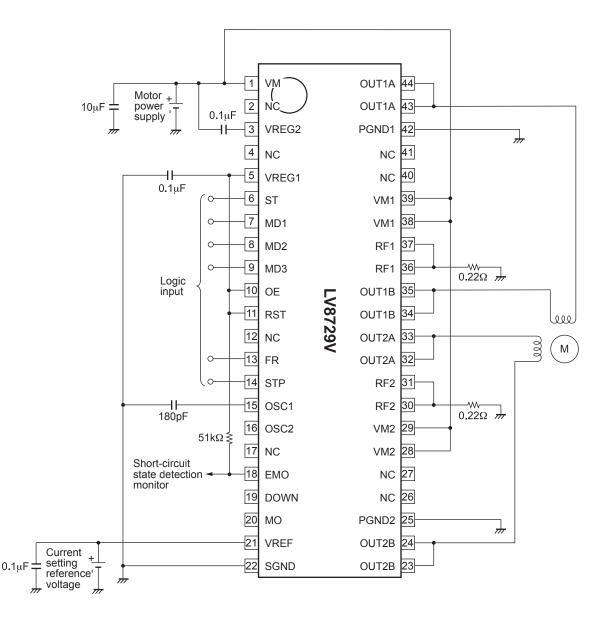
The output pin is an open-drain connection.

This pin is turned ON when no rising edge of STP between the input signals while a period determined by a capacitor between OSC2 and GND, and outputs at low levels.

The open-drain output in once turned ON, is turned OFF at the next rising edge of STP.

Holding current switching time (Tdown) is set as shown below by a capacitor between OSC2 pin and GND. Tdown = $\cos 2 \times 0.4 \times 10^9$ (s)

(Example) When Cosc2 = 1500pF, the holding current switching time is shown below. Tdown = 1500pF x 0.4 x 109 = 0.6 (s)


(16) Thermal shutdown function

The thermal shutdown circuit is incorporated and the output is turned off when junction temperature Tj exceeds 180°C and the abnormal state warning output is turned on. As the temperature falls by hysteresis, the output turned on again (automatic restoration).

The thermal shutdown circuit does not guarantee the protection of the final product because it operates when the temperature exceed the junction temperature of Tjmax=150°C.

 $TSD = 180^{\circ}C (typ)$ $\Delta TSD = 40^{\circ}C (typ)$

Application Circuit Example

The above sample application circuit is set to the following conditions:

- \cdot Output enable function fixed to the output state (OE = "H")
- Reset function fixed to the output state (RST = "H")
- \cdot Chopping frequency : 55.5kHz (Cosc1 = 180pF)

The set current value is as follows :

 $I_{OUT} = ($ Current setting reference voltage / 5 $) / 0.22\Omega$

ORDERING INFORMATION

Device	Package	Shipping (Qty / Packing)			
LV8729V-TLM-H	SSOP44K (275mil) (Pb-Free / Halogen Free)	2000 / Tape & Reel			
LV8729V-MPB-H	SSOP44K (275mil) (Pb-Free / Halogen Free)	30 / Fan-Fold			

ON Semiconductor and the ON logo are registered trademarks of Semiconductor Components Industries, LLC (SCILLC). SCILLC owns the rights to a number of patents, trademarks, copyrights, trade secrets, and other intellectual property. A listing of SCILLC's product/patent coverage may be accessed at www.onsemi.com/site/pdf/Patent-Marking.pdf. SCILLC reserves the right to make changes without further notice to any products herein. SCILLC makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does SCILLC assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation special, consequential or incidental damages. "Typical" parameters which may be provided in SCILLC data sheets and/or specifications can and do vary in different applications and actual performance may vary over time. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. SCILLC does not convey any license under its patent rights nor the rights of others. SCILLC products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the SCILLC product create a situation where personal injury or death may occur. Should Buyer purchase or use SCILLC products for any such unintended or unauthorized application, Buyer shall indemnify and hold SCILLC and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that SCILLC was negligent regarding the design or manufacture of the part. SCILLC is an Equal Oppo