

TPS92070

SLUSAN1 - DRAFT 6 * AUGUST 30, 2011

High-Efficiency Integrated Dimming LED Lighting Controller

Check for Samples: TPS92070

FEATURES

- Advanced Integrated Dimming Interface
- Non-Dissipative TRIAC Dimmer Management
- Lamp-to-Lamp Uniformity During Dimming
- No Low-Frequency Photometric Ripple
- Exponential Dimming Profile
- Innovative Secondary-Side Feedback
 Eliminates Optocoupler Devices
- LED Current Regulation better than 5%
- Programmable Minimum LED Current
- Valley Switching and DCM Operation for Reduced EMI and Improved Efficiency
- Leading Edge Dimmer Detection
- Power Factor > 0.8
- Cycle-by-Cycle Current Limit Protection
- Low Start-Up and Standby Currents
- Integrated PWM MOSFET Driver
- Thermal Shutdown
- 16-Pin, TSSOP package

APPLICATIONS

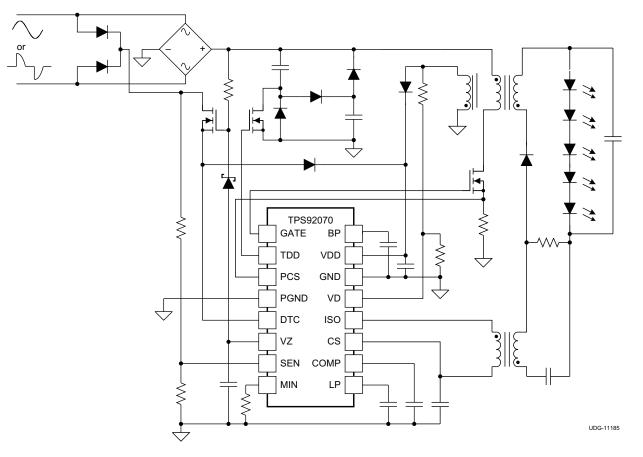
- LED Light Bulb Replacement
- LED Luminaires
- LED Downlights
- LED Wall Washers

DESCRIPTION

The TPS92070 is an advanced PWM controller ideal for use in low-power, offline, LED lighting applications. The integrated dimming interface circuit of the TPS92070 features a non-dissipative dimmer trigger control circuit. The TPS92070 controller provides DC LED current with no photometric ripple effects. The DC current also results in higher efficacy of the LEDs. The TPS92070 provides exponentially controlled light output based on the external dimmer position. High power factor is achieved with a valley fill circuit. Once a leading-edge dimmer is detected, the TPS92070 sets an output to disable the PFC circuit and thus optimizes driver operation. The LED current sense precision error amplifier implements deep dimming. The TPS92070 current sensing scheme provides tight current regulation and eliminates the need for an optocoupler. The tight current regulation allows for strong color and intensity matching amongst individual bulbs or luminaires.

The TPS92070 also contains a variety of protection features including cycle-by-cycle peak-current limit, overcurrent protection, open-LED (output overvoltage) protection, undervoltage lockout, and thermal shutdown.

Please be aware that an important notice concerning availability, standard warranty, and use in critical applications of Texas Instruments semiconductor products and disclaimers thereto appears at the end of this data sheet.


TPS92070

SLUSAN1 - DRAFT 6 * AUGUST 30, 2011

www.ti.com

APPLICATION DIAGRAM

RUMENTS

www.ti.com

This integrated circuit can be damaged by ESD. Texas Instruments recommends that all integrated circuits be handled with appropriate precautions. Failure to observe proper handling and installation procedures can cause damage.

ESD damage can range from subtle performance degradation to complete device failure. Precision integrated circuits may be more susceptible to damage because very small parametric changes could cause the device not to meet its published specifications.

		ORDERING IN	IFORMATION (1)(2)		
TEMPERATURE RANGE (T _J)	PACKAGE	PINS	TRANSPORT MATERIAL	UNITS	ORDERABLE NUMBER
–40°C to 140°C	Plastic TSSOP	16	Tube	70	TPS92070PW
-40 C to 140 C	Plastic 1550P	10	Tape and Reel	2000	TPS92070PWR

ODDEDING INFORMATION(1)(2)

For the most current package and ordering information, see the Package Option Addendum at the end of this document, or see the TI (1)website at www.ti.com.

Package drawings, thermal data, and symbolization are available at www.ti.com/packaging (2)

ABSOLUTE MAXIMUM RATINGS⁽¹⁾⁽²⁾⁽³⁾

All voltages are with respect to GND, -40°C < T_J = T_A < 125°C, all currents are positive into and negative out of the specified terminal (unless otherwise noted)

			VALU	E	
			MIN	MAX	UNITS
Supply voltage	VDD ⁽⁴⁾		-0.3	25.0	
	ISO, CS, COMP, LP, MIN, SEN,	PCS	-0.3	7.0	
Land and the second	BP, GATE, TDD		-0.3	7.2	
Input voltages	VD		-1.4	7.0	
	VZ, DTC ⁽⁵⁾		-0.3	20.0	
	VZ (pulse < 1 ms)			5	
	BP		-0.5	0	
Input current	DTO	Peak		30	mA
	DTC	Average		16	
	VDD			5	
Operating junction temperature ⁽⁶⁾			-40	140	°C
Storage temperature ⁽⁶⁾			-65	150	°C
Lead temperature (10 seconds)				260	°C

(1) These are stress ratings only. Stress beyond these limits may cause permanent damage to the device. Functional operation of the device at these or any conditions beyond those indicated under Recommended Operating Conditions is not implied. Exposure to absolute maximum rated conditions for extended periods of time may affect device reliability

All voltages are with respect to GND.

All currents are positive into the terminal, negative out of the terminal. (3)

VDD clamped at approximately 23 V. See ELECTRICAL CHARACTERISTICS table. (4)

VZ clamped at approximately 12.5 V. See ELECTRICAL CHARACTERISTICS table. (5)

(6) Higher temperature may be applied during board soldering process according to the current JEDEC J-STD-020 specification with peak reflow temperatures not higher than classified on the device label on the shipping boxes or reels.

SLUSAN1 - DRAFT 6 * AUGUST 30, 2011

www.ti.com

TRUMENTS

XAS

RECOMMENDED OPERATING CONDITIONS

Unless otherwise noted, all voltages are with respect to GND, $-40^{\circ}C < T_J = T_A < 125^{\circ}C$.

		MIN	TYP	MAX	UNIT
VDD	Input Voltage	9		21.5	V
VZ	Current	1		100	μA
R _{MIN}	Resistor from MIN to GND ⁽¹⁾	25		75	kΩ
R _{VD1}	Valley detect resistor from AUX winding to VD pin	50		200	kΩ
C _{VZ}	VZ bypass capacitor	1		4.7	nF
C _{BP}	BP capacitor	0.47	1		μF
C_{VDD}	VDD capacitor	10×C _{BP7}	4.7		μF
$C_{VDD,BP}$	VDD bypass capacitor, ceramic ⁽²⁾	0.1			μF

(1) R_{MIN} values greater than 75K will produce lower minimum current values. However accuracy of the minimum current will degrade, and there may be flickering at very low values of Imin.

(2) If a ceramic capacitor is used for C_{VDD} then this capacitor is not needed.

ELECTROSTATIC DISCHARGE (ESD) PROTECTION

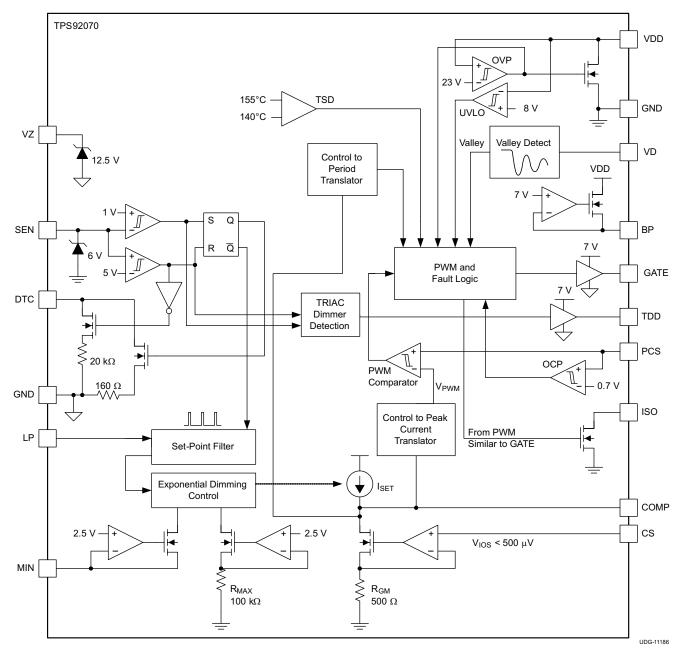
	MAX	UNIT
ESD Rating, Human Body Model (HBM)	1.5	kV
ESD Rating, Charged Device Model (CDM)	500	V

ELECTRICAL CHARACTERISTICS

Unless otherwise stated, -40°C < T_A < 125°C, T_J = T_A , V_{VDD} = 12 V, GND =0 V, I_{VZ} = 50 µA, R_{MIN} = 71.5 kΩ, C_{VDD} = 4.7µF, C_{BP} = 1 µF, C_{LP} = 220nF

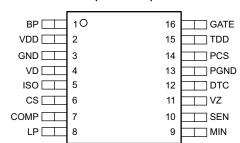
PARAMETER		TEST CONDITIONS	MIN	TYP	MAX	UNITS
BIAS and S	TARTUP					
I _{START}	VZ startup current	V_{VDD} = 7 V, Measured I _{VZ}		1.0	10	μA
V _{VZ}	VZ voltage	V_{VDD} = 7 V, 15 µA < I _{VZ} < 100 µA	11.5	12.5	13.5	V
	VDD startup current	V _{VDD} = 7.5 V		134	240	
I _{VDD}	Standby current	$V_{LP} = 0 V, V_{SEN} = 0 V$		750	1500	μA
	Switching current	fG _{ATE} = 138 kHz, GATE – unloaded		1880	2500	
V _{VDD(uvlo)}	VDD UVLO threshold	Measured at VDD (falling)	7	7.88	8.4	V
V _{VDD(ovp)}	VDD clamp and OVP	Measured at VDD (rising)	21.5	23.5	25	V
R _{VZ(ovp)}	OVP VZ discharge resistance	$V_{VDD} = V_{VDD(ovp)}, VZ = 3 V$		4.8		kΩ
V _{BP}	BP Regulation voltage	9 V < V _{VDD} < 19V, I _{BP} = -0 μA	6.7	7	7.2	V
DIMMER TR						
V _{SEN(hi)}		Measured at SEN (rising)	4.75	5	5.25	v
V _{SEN(lo)}	 Dimmer sense thresholds 	Measured at SEN (falling)	0.9	1	1.10	V
V _{SEN(clamp)}	SEN Clamp voltage	I _{SEN} = 100 μA	5.75	6	6.25	V
I _{DTC(lkg)}	DTC to PGND leakage current	V_{DTC} = 12 V, V_{SEN} > $V_{\text{SEN}(hi)}$		40	100	nA
_		V_{DTC} = 3 V, V_{SEN} (falling), $V_{SEN(lo)}$ < V_{SEN} < $V_{SEN(hi)}$	16	20	25	kΩ
R _{DTC(pgnd)}	DTC to PGND resistance	V_{DTC} = 3 V, V_{SEN} (rising), V_{SEN} < $V_{SEN(hi)}$	100	156	300	Ω
		V _{SEN} < V _{SEN(lo)}	100	156	300	Ω
CURRENT	SETPOINT					
V _{MIN}	MIN regulation voltage			2.5		
R _{OUT(lp)}	LP output resistance			500		kΩ
V _{OH(lp)}	LP Maximum voltage level	$V_{SEN} = 6 V, I_{LP} = 0 \mu A$	2.9	3	3.1	V
V _{OL(lp)}	LP Minimum voltage level	$V_{SEN} = 0 V, I_{LP} = 0 \mu A$	-0.02 5	0	0.025	V

ELECTRICAL CHARACTERISTICS (continued)


Unless otherwise stated, -40°C < T_A < 125°C, T_J = T_A , V_{VDD} = 12 V, GND =0 V, I_{VZ} = 50 µA, R_{MIN} = 71.5 k Ω , C_{VDD} = 4.7µF, C_{BP} = 1 µF, C_{LP} = 220nF

	PARAMETER	TEST CONDITIONS	MIN	TYP	MAX	UNITS
ERROR AM	PLIFIER					
V _{IOS}	Input offset voltage	$5 \text{ mV} < \text{V}_{\text{CS}} < 100 \text{ mV}, \text{ V}_{\text{COMP}} = 3 \text{ V}$		±500		μV
V _{COMP(min)}	Minimum COMP clamp voltage	V_{CS} = 150 mV, V_{LP} < 3 V	1.45	1.53	1.60	V
V _{COMP(max)}	Maximum COMP clamp voltage	V_{CS} < 100 mV, V_{LP} > 2.1 V	3.6	3.7	3.8	V
V _{CS(min)}	Minimum CS reference voltage	$V_{LP} = 0, R_{MIN} = 71.5 \text{ k}\Omega, T_A = 25^{\circ}\text{C}$	2.835	3.15	3.465	mV
V _{CS(max)}	Maximum CS reference voltage	$V_{LP} > 2.1 \text{ V}, \text{ T}_{A} = 25^{\circ}\text{C}$	97	100	103	mV
MODULATI	ON					
f _{CLAMP(max)}	Maximum frequency clamp	Measured at GATE, V_{COMP} = 3.5 V, T_A = 25°C	132	138	146	
f _{CLAMP(min)}	Minimum frequency clamp	Measure at GATE, V_{COMP} = 1.53 V, V_{VD} = 0 V, T_A = 25°C	10	20	30	kHz
VALLEY DE	TECT		1			
		Measured when GATE is high, $I_{VD} = -15 \ \mu A$		-560		
VD _{CLAMP}	VD clamp	Measured when GATE is low and VD is falling		-125		mV
V _{VD(en)}	VD enable threshold	Minimum peak of resonant valley, V _{COMP} = 1.8 V	600			mV
V _{VD(zc)}	Zero-crossing detect threshold	Measured at VD (falling)	80	100	135	mV
t _{VD(vw)}	Valley wait timer	$V_{COMP} > V_{MINF_DET}$, $V_{VD} = 0$ V, wait time for next PWM pulse with zero-crossing detected	10	12.7	14	μs
I _{VD(min)}	Current required for valley detection		-50			μA
	RENT PROTECTION		1			
V _{PCS(oc)}	Over current limit	Measure at PCS (rising), V _{COMP} = 4 V	670	700	750	mV
t _{PCS_G1(oc)}	Propagation delay	Measured between PCS and GATE falling	10	64	190	ns
PWM COMF	PARATOR	+	1			<u></u>
t _{LEB}	Leading edge blanking	Measured at GATE, V _{COMP} = 3.5 V	180	220	300	ns
V _{PWM(max)}		$V_{COMP} = V_{COMP(max)}$		600	650	
V _{PWM}	PWM thresholds	V _{COMP} = 3.5 V	460	500	550	
V _{PWM(min)}	_	Measured at PCS rising, COMP ≤ 2 V	40	65	80	mV
t _{PCS G1(cl)}	Propagation delay	Measured between PCS and GATE falling	10	54	120	ns
= ()	TED CURRENT SENSE					
R _{ISO(pd)}	Pull down resistance	GATE is high	240	270	350	Ω
PWM OUTP	UTS					L
V _{GATE(oh)}	Output voltage high	Manageria	6.7	7	7.2	
V _{GATE(ol)}	Output voltage low	Measured at GATE	-0.01	0	0.01	V
t _{FALL(pwm)}	Fall time	$C_{GATE} = 1 \text{ nF}, T_A = 25^{\circ}C$		43	70	
t _{RISE(pwm)}	Rise time	$CG_{ATE} = 1 \text{ nF}, T_A = 25^{\circ}C$		105	155	ns
	MER DETECTION					L
V _{TDD(oh)}	Output voltage high	Measured at TDD	6.7	7	7.2	
V _{TDD(ol)}	Output voltage low		-0.01	0	0.01	V
t _{FALL(tdd)}	Fall time	C _{TDD} = 1 nF		120	190	
t _{RISE(tdd)}	Rise time	C _{TDD} = 1 nF		130	220	ns
t _{DLY_1V_5V}	Minimum delay from 1V to 5V SEN signal transitions for no dimmer detection		105	135	170	μs

Texas Instruments


DEVICE INFORMATION

FUNCTIONAL BLOCK DIAGRAM

TPS92070 PW (TSSOP) PACKAGE (TOP VIEW)

PIN DESCRIPTIONS

PIN		DESCRIPTION								
NAME	NO.	DESCRIPTION								
BP	1	Connect a 1-uF ceramic capacitor to GND to bypass the internal voltage regulator.								
COMP	7	Loop compensation output. Connect the loop compensation components between this pin and GND								
CS	6	LED current sense feedback and positive input terminal of the error amplifier.								
DTC	12	Dimmer trigger control input. Connect this pin to thesource of the HV N-channel MOSFET cascode device of the DTC circuit.								
GATE	16	PWM drive signal output. Connect to flyback power MOSFET.								
GND	3	Ground for internal circuitry								
ISO	5	Inverting input of secondary side current sense comparator and isolation transformer buffer. Connect to GND for non-isolated applications.								
LP	8	Pole for DTC low pass filter. Connect a capacitor to GND to set the response time of the dimming level detection circuit.								
MIN	9	Minimum current programming input. Connect a resistor to GND to set the minimum LED current.								
PCS	14	Primary current sense input. Connected to shunt resistor for primary side current sense.								
PGND	13	Power ground for GATE Driver. Connected to GND ⁽¹⁾								
SEN	10	Dimmer sense input. An internal window comparator continuously monitors this pin to determine the dimmer setting.								
TDD	15	TRIAC dimmer detect. Drives bypass FET in Valley Fill PFC when dimmer is detected. For non PFC applications, leave this pin open								
VD	4	Valley detect input. Connect to the Aux winding through a resistor divider.								
VDD	2	Provides power to the device. Connect a bypass capacitor directly to GND. See RECOMMENDED OPERATING CONDITIONS for suggested values.								
VZ	11	Voltage clamp. This pin clamps the maximum voltage on the gate of the external HV DTC N-channel MOSFET.								

(1) See Application Section for layout recommendations

SLUSAN1-DRAFT 6 * AUGUST 30, 2011

TPS92070

Unless otherwise stated, -40°C ≤ $T_A = T_J$ ≤+125°C, $V_{VDD} =$ 12 V, GND =0V, $I_{VZ} =$ 50 μ A, $R_{MIN} =$ 71.5 k Ω , $C_{VDD} =$ 10 μ F, $C_{VZ} = 1 \text{ nF}, C_{LP} = 220 \text{ nF}$ 144 20.4 Maximum Clamp Frequency (kHz) 20.2 Minimum Clamp Fregency (kHz) 142 20.0 140 19.8 138 19.6 19.4 136 19.2 134 19.0 132 18.8 130 18.6 -40 -25 -10 5 20 35 50 65 80 95 110 125 40 -25 -10 5 20 35

TYPICAL CHARACTERISTICS

6000

Temperature (°C) 6000 Figure 2. Minimum Clamp Frequency vs. Temperature

50 65 80 95

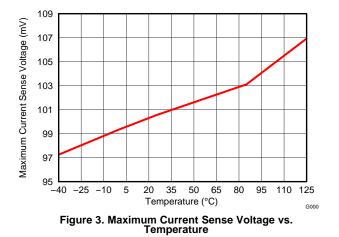



Figure 4. Minimum Current Sense Voltage vs. Temperature

Temperature (°C) Figure 1. Maximum Clamp Frequency vs. Temperature

www.ti.com

110 125

APPLICATIONS

STARTUP BIAS AND UVLO

During powerup when VDD is less than the UVLO threshold of 8 V, the VZ pin is trickle charged with $I_{VZ(start)}$ of approximately 10 µA through the startup-resistor connected to the bulk rectified voltage. As VZ is being charged, VDD tracks VZ (less V_{GSTH}) through the external cascode HV MOSFET (Q1) supplying a VDD startup current of 135 µA. Once VZ reaches the TPS92070 zener clamp regulation level of 12.5 V, the device enters into a stand-by mode during which the dimmer trigger circuit (DTC), set-point filter, 7-V bias regulator, and a minimal amount of housekeeping circuitry is active. The TPS92070 remains in this state until the SEN pin exceeds 5 V indicating that adequate line voltage is present, either through TRIAC firing, or line voltage presence. The typical start-up waveforms are shown in Figure 5.

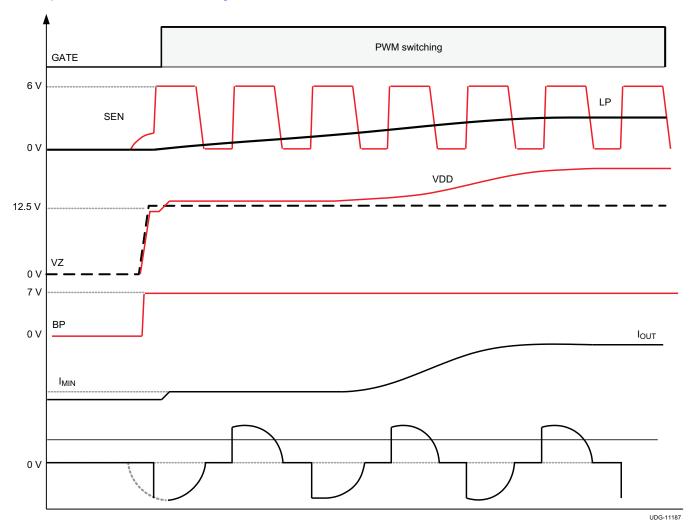


Figure 5. Typical Startup Waveforms for a TRIAC Triggered V_{IN(ac)} Input

DTC and PHASE DETECTION

The DTC pin is a current sink which loads the dimmer with approximately 20 mA during the zero-crossing of the AC line to ensure that the TRIAC is reliably triggered. This current sink is switched on when the voltage on the SEN pin is below 5 V. The setpoint filter in conjunction with the SEN and LP pins is used to determine the firing angle of the TRIAC dimmer (if any) connected to the input of the LED driver. An internal window comparator monitors the SEN (dimmer sense input) pin and the resulting duty-cycle is transformed into a voltage at the LP pin using the LP filter. The relation between the TRIAC firing angle and the LP voltage is shown in Figure 6. It illllustrates the conversion of the TRIAC firing angle to LP voltage and exponential dimming control of I_{SET} based on internal control voltage. As the voltage on the LP varies from 0 V to 3 V based on the mapping of 0% to 100% SEN duty-cycle, an internal control voltage is linearly modulated by TPS92070 from 400 mV to 200 mV.

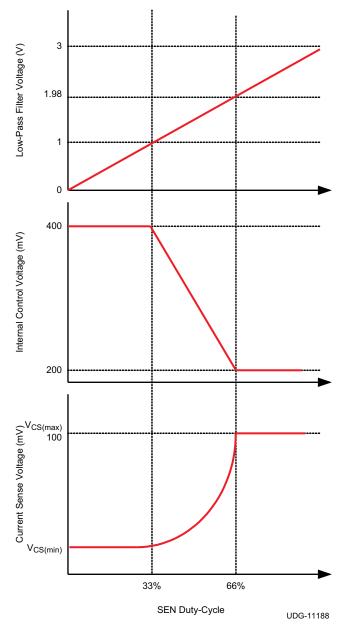


Figure 6. TRIAC Firing Angle vs. Low-Pass Filter Voltage

The internal control voltage, V_{CTRL} is clamped to 0.4 V for LP < 1 V and clamped to 0.2 V for LP > 1.98V. As the control voltage is linearly modulated between 0.4 V and 0.2 V, the current sense reference voltage V_{CS} is exponentially controlled between the pre-set maximum of 100 mV and the externally programmed minimum limit of V_{CS MiN}. The current setpoint level, V_{CS MiN} is programmed by R_{MIN}.

$$V_{CS(min)} = \frac{225}{R_{MIN}}$$
(1)

The exponential control of the set-point current extends the dimming control range and enables up to two decades of LED current-programming between the $V_{CS(min)}$ and $V_{CS(max)}$ = 100 mV levels.

LED CURRENT SENSE

The secondary-side LED current is sensed using the CS pin and tightly regulated using the low-offset (500 μ V) transconductance amplifier. The transconductance (g_M) of the amplifier is internally set to approximately g_M = 1/500 S. In the direct current-sense mode (non-isolated), the ISO pin is connected to GND. In the isolated-mode, the secondary-side LED current is sensed using a small transformer with the secondary of the transformer connected between CS and ISO pins as shown in Figure 7. The ISO pin has a switched pull-down resistance of 270 Ω .

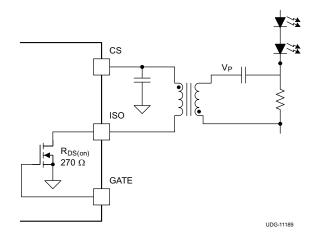
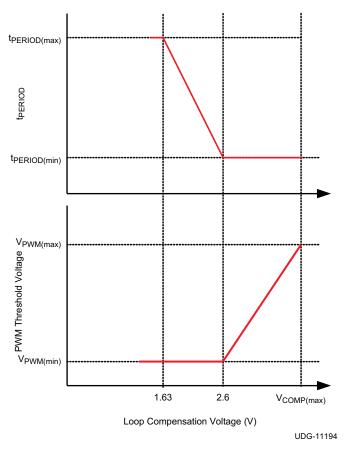


Figure 7. Isolated Current Sense

MODULATION

The internal I_{SET} current and RGM sets a reference input for the transconductance current sense amplifier which controls the voltage on the COMP pin. The COMP pin is used for loop compensation. The voltage on the COMP pin modulates the peak of the primary current and the switching frequency (frequency modulation) of the flyback converter. The modulation on the primary current and the switching frequency are shown in Figure 8. The peak of the primary current is modulated by varying the threshold on the PWM comparator. The threshold is modulated from 0.6 V to 0.065 V while the switching frequency varies between 20 kHz and 138 kHz as COMP pin varies from 3.7 V to 2.6 V. The maximum COMP pin voltage is clamped at 3.7 V allowing the maximum cycle-by-cycle peak current limit PWM threshold to be 0.6 V. The switching frequency is linearly modulated from 138 kHz to 20 kHz with the PWM threshold clamped at 0.065 V as the COMP pin varies from 2.6 V to 1.63 V. The minimum frequency is clamped at 20 kHz and TPS92070 enters the minimum frequency detect state for COMP <1.6 V. The minimum voltage on the COMP is clamped at 1.53 V. The PWM threshold is related to the COMP pin voltage as shown in Equation 2 and Equation 3.


For
$$2.6 \le V_{COMP} \le 3.7$$
,

$$V_{\rm PWM} = \frac{V_{\rm COMP} - 2.5}{2}$$

For $V_{COMP} < 2.6 V$, $V_{PWM} = 0.065$ (2)

11

Figure 8. Switching Period and PWM Threshold Modulation Based on COMP pin Voltage

PRIMARY CURRENT SENSE

The primary current is sensed by monitoring the voltage developed across an external current-sense resistor connected between the source of the external HV MOSFET and PGND. The PCS pin is used for monitoring the voltage and it is then compared with the PWM threshold (V_{PWM}). The PWM comparator has a leading-edge blanking time of 220 ns to avoid any false-tripping of the comparator due to capacitive charge spikes on the PCS pin. The GATE output is pulled low once the PCS pin reaches the PWM threshold.

VALLEY DETECT

TPS92070 ensures that the flyback converter always operates in either DCM or QR mode of operation and initiates a new PWM switching cycle only after the energy in the flyback transformer is completely reset to zero. This is accomplished by monitoring the auxiliary winding waveform using a resistive divider connected to the VD pin. The TPS92070 initiates a new switching cycle based on the following conditions:

- For normal operation with 1.63 V ≤ V_{COMP} ≤ 3.7 V, a new PWM switching cycle is initiated when the internal timer t_{PERIOD} has expired and the next valley is detected. The VD pin must go below 100 mV (V_{VD(zc)}) prior to valley detection to enable the valley detector circuit.
- In the minimum frequency clamp state when V_{COMP} < 1.63 V, the switching period is fixed at t_{PERIOD(max)} (corresponding to f_{CLAMP(min)}) and the valley detector is disabled.
- The relationship of t_{PERIOD} to the switching frequency is shown in Equation 4 and Equation 5.

$$f_{\text{CLAMP}(\text{max})} = \frac{1}{t_{\text{PERIOD}(\text{min})}}$$

$$f_{\text{CLAMP}(\text{min})} = \frac{1}{t_{\text{PERIOD}(\text{max})}}$$
(5)

By turning on the flyback power switch at the resonant valley, the switching losses are reduced thereby enabling higher efficiency. The voltage at the VD pin is clamped at -0.56 V during the negative excursions on the AUX winding when GATE is high. When GATE is low and during the resonant valley detection, the VD pin is clamped at -0.2 V. The interface to the VD pin to the AUX winding is shown in Figure 9. The TPS92070 requires that the positive peak of the resonant ring at the VD pin is higher than 0.6 V ($V_{VD(en)}$) to ensure that the valley-detect circuit is enabled for detection on the falling edge when $V_{COMP} > 1.63$ V. Hence, R_{VD2} need to be selected in such a way that this condition is met for all AUX voltages when $V_{COMP} > 1.63$ V. A current $I_{VD(min)}$ of at least 50 µA must be drawn from the VD pin when the GATE is high to ensure proper valley detection. This requirement determines the value of R_{VD1} . The waveforms associated with the valley detect are shown in Figure 10. If the voltage at the AUX winding is not sufficient for valley detection when $V_{COMP} > 1.63$ V, an internal valley wait timer of 12.7 µs ($t_{VD(vw)}$) expires after the t_{PERIOD} times out. The time out of the valley wait timer would initiate a new PWM switching pulse following the 100 mV threshold crossing on the VD pin.

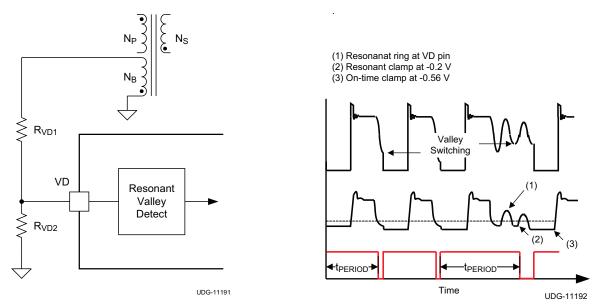


Figure 9. Auxiliary Winding Interface to VD

TPS92070

SLUSAN1-DRAFT 6 * AUGUST 30, 2011

www.ti.com

TRIAC DIMMER DETECT

The TDD pin is used to drive an external by-pass FET that disables valley-fill PFC when a dimmer is detected by TPS92070. The TDD pin is set to logic high state ($V_{TDD(oh)} = 7$ V) as the part is powered up and if no dimmer is detected by continuously sensing the SEN pin, the TDD pin is then reset to logic low ($V_{TDD(ol)} = 0$ V). The presence of a dimmer is detected by monitoring the time delay in a window between 1 V and 5 V comparators that are monitoring the SEN pin. If the rise time from 1 V to 5 V is greater than 135 µs for four consecutive half-line cycles, direct connection to the AC line without dimmer is assumed, and the TDD output goes low. Otherwise the TDD pin remains high. If the TDD pin is low and the delay time ($t_{DLY_1V_5V}$) is detected to be less than 135 µs, for four consecutive half-line cycles, the TDD pin goes high once the SEN pin falls below 1 V indicating dimmer detection.

PROTECTION FEATURES

Output Over Voltage Protection (OVP)

Output (secondary-side) overvoltage protection / open LED detection is achieved by disabling the controller whenever the VDD voltage rises enough to trigger its internal 23 V clamp. Upon OVP detection, GATE is pulled low and the TDD pin is reset to logic-high state. The TPS92070 is disabled and an internal pull-down resistor ($R_{VZ(ovp)}$) discharges the VZ pin, until the VDD voltage drops below the UVLO threshold when a restart is triggered.

Overcurrent Protection (OCP)

Overcurrent faults are detected when the PCS pin exceeds the internal 700-mV threshold. Upon the detection of an OCP condition, the GATE signal is pulled low, and the LP pin voltage is reset to 0 V corresponding to the minimum LED output condition. GATE switching and current regulation resumes from the minimum LED light setting once the SEN pin crosses the 5 V.

Thermal Shutdown (TSD)

TPS92070 is disabled if the junction temperature of the part exceeds approximately 155°C and enters into the restart mode where the VZ pin is discharged until VDD falls below the UVLO threshold. The device stays in this restart mode until the junction temperature falls below approximately 140°C when it resumes normal operation with the light output preset to the minimum setting.

PCB Layout

Use good layout practices when constructing the PCB. Maintain the location of bypass components close to the pins being bypassed. Route power ground (PGND) separate from signal ground (GND) to keep the high current paths and the small signal paths separate. Connect PGND to GND at a single point, preferably under the device.

PACKAGING INFORMATION

Orderable Device	Status ⁽¹⁾	Package Type	Package Drawing	Pins	Package Qty	Eco Plan ⁽²⁾	Lead/ Ball Finish	MSL Peak Temp ⁽³⁾	Samples (Requires Login)
TPS92070PW	ACTIVE	TSSOP	PW	16	90	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	
TPS92070PWR	ACTIVE	TSSOP	PW	16	2000	Green (RoHS & no Sb/Br)	CU NIPDAU	Level-1-260C-UNLIM	

⁽¹⁾ The marketing status values are defined as follows:

ACTIVE: Product device recommended for new designs.

LIFEBUY: TI has announced that the device will be discontinued, and a lifetime-buy period is in effect.

NRND: Not recommended for new designs. Device is in production to support existing customers, but TI does not recommend using this part in a new design.

PREVIEW: Device has been announced but is not in production. Samples may or may not be available.

OBSOLETE: TI has discontinued the production of the device.

⁽²⁾ Eco Plan - The planned eco-friendly classification: Pb-Free (RoHS), Pb-Free (RoHS Exempt), or Green (RoHS & no Sb/Br) - please check http://www.ti.com/productcontent for the latest availability information and additional product content details.

TBD: The Pb-Free/Green conversion plan has not been defined.

Pb-Free (RoHS): TI's terms "Lead-Free" or "Pb-Free" mean semiconductor products that are compatible with the current RoHS requirements for all 6 substances, including the requirement that lead not exceed 0.1% by weight in homogeneous materials. Where designed to be soldered at high temperatures, TI Pb-Free products are suitable for use in specified lead-free processes.

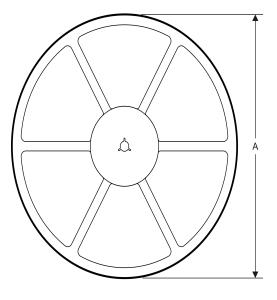
Pb-Free (RoHS Exempt): This component has a RoHS exemption for either 1) lead-based flip-chip solder bumps used between the die and package, or 2) lead-based die adhesive used between the die and leadframe. The component is otherwise considered Pb-Free (RoHS compatible) as defined above.

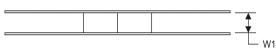
Green (RoHS & no Sb/Br): TI defines "Green" to mean Pb-Free (RoHS compatible), and free of Bromine (Br) and Antimony (Sb) based flame retardants (Br or Sb do not exceed 0.1% by weight in homogeneous material)

⁽³⁾ MSL, Peak Temp. -- The Moisture Sensitivity Level rating according to the JEDEC industry standard classifications, and peak solder temperature.

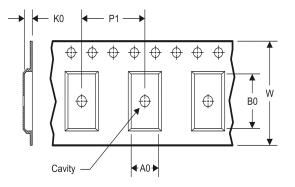
Important Information and Disclaimer: The information provided on this page represents TI's knowledge and belief as of the date that it is provided. TI bases its knowledge and belief on information provided by third parties, and makes no representation or warranty as to the accuracy of such information. Efforts are underway to better integrate information from third parties. TI has taken and continues to take reasonable steps to provide representative and accurate information but may not have conducted destructive testing or chemical analysis on incoming materials and chemicals. TI and TI suppliers consider certain information to be proprietary, and thus CAS numbers and other limited information may not be available for release.

In no event shall TI's liability arising out of such information exceed the total purchase price of the TI part(s) at issue in this document sold by TI to Customer on an annual basis.


PACKAGE MATERIALS INFORMATION


www.ti.com

TAPE AND REEL INFORMATION


REEL DIMENSIONS

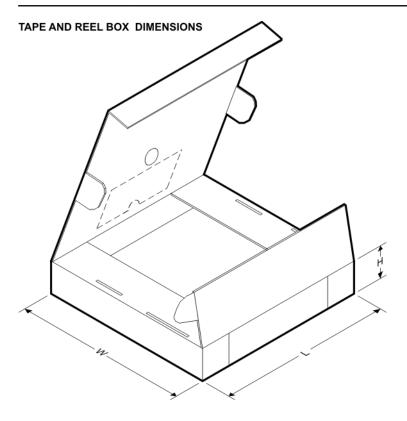
TEXAS INSTRUMENTS

TAPE DIMENSIONS

A0	Dimension designed to accommodate the component width						
B0 Dimension designed to accommodate the component length							
K0	Dimension designed to accommodate the component thickness						
W	Overall width of the carrier tape						
P1	Pitch between successive cavity centers						

*All dimensions are nominal	

TAPE AND REEL INFORMATION

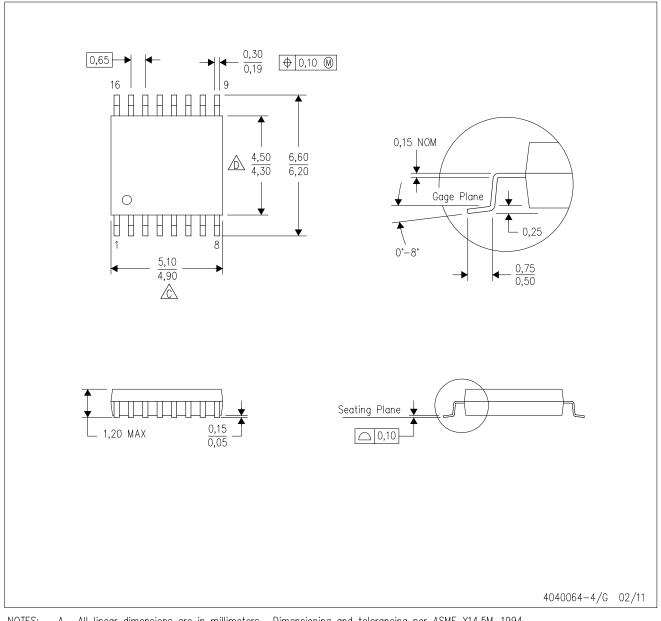

Device	Package Type	Package Drawing		SPQ	Reel Diameter (mm)	Reel Width W1 (mm)	A0 (mm)	B0 (mm)	K0 (mm)	P1 (mm)	W (mm)	Pin1 Quadrant
TPS92070PWR	TSSOP	PW	16	2000	330.0	12.4	6.9	5.6	1.6	8.0	12.0	Q1

TEXAS INSTRUMENTS

www.ti.com

PACKAGE MATERIALS INFORMATION

16-Sep-2011



*All dimensions are nominal

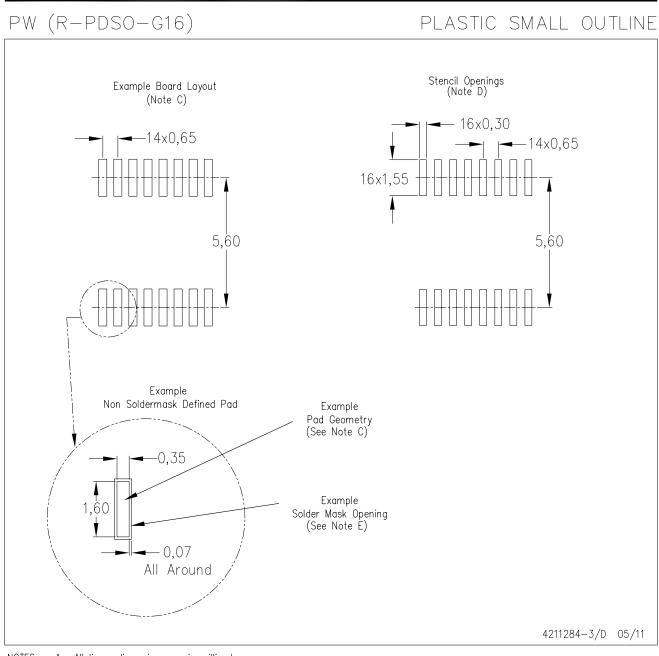
Device	Package Type	Package Drawing	Pins	SPQ	Length (mm)	Width (mm)	Height (mm)
TPS92070PWR	TSSOP	PW	16	2000	346.0	346.0	29.0

PW (R-PDSO-G16)

PLASTIC SMALL OUTLINE

NOTES:

A. All linear dimensions are in millimeters. Dimensioning and tolerancing per ASME Y14.5M-1994. β . This drawing is subject to change without notice.


Body length does not include mold flash, protrusions, or gate burrs. Mold flash, protrusions, or gate burrs shall not exceed 0,15 each side.

Body width does not include interlead flash. Interlead flash shall not exceed 0,25 each side.

E. Falls within JEDEC MO-153

LAND PATTERN DATA

NOTES: A. All linear dimensions are in millimeters.

- B. This drawing is subject to change without notice.
- C. Publication IPC-7351 is recommended for alternate designs.
- D. Laser cutting apertures with trapezoidal walls and also rounding corners will offer better paste release. Customers should contact their board assembly site for stencil design recommendations. Refer to IPC-7525 for other stencil recommendations.
- E. Customers should contact their board fabrication site for solder mask tolerances between and around signal pads.

IMPORTANT NOTICE

Texas Instruments Incorporated and its subsidiaries (TI) reserve the right to make corrections, modifications, enhancements, improvements, and other changes to its products and services at any time and to discontinue any product or service without notice. Customers should obtain the latest relevant information before placing orders and should verify that such information is current and complete. All products are sold subject to TI's terms and conditions of sale supplied at the time of order acknowledgment.

TI warrants performance of its hardware products to the specifications applicable at the time of sale in accordance with TI's standard warranty. Testing and other quality control techniques are used to the extent TI deems necessary to support this warranty. Except where mandated by government requirements, testing of all parameters of each product is not necessarily performed.

TI assumes no liability for applications assistance or customer product design. Customers are responsible for their products and applications using TI components. To minimize the risks associated with customer products and applications, customers should provide adequate design and operating safeguards.

TI does not warrant or represent that any license, either express or implied, is granted under any TI patent right, copyright, mask work right, or other TI intellectual property right relating to any combination, machine, or process in which TI products or services are used. Information published by TI regarding third-party products or services does not constitute a license from TI to use such products or services or a warranty or endorsement thereof. Use of such information may require a license from a third party under the patents or other intellectual property of the third party, or a license from TI under the patents or other intellectual property of TI.

Reproduction of TI information in TI data books or data sheets is permissible only if reproduction is without alteration and is accompanied by all associated warranties, conditions, limitations, and notices. Reproduction of this information with alteration is an unfair and deceptive business practice. TI is not responsible or liable for such altered documentation. Information of third parties may be subject to additional restrictions.

Resale of TI products or services with statements different from or beyond the parameters stated by TI for that product or service voids all express and any implied warranties for the associated TI product or service and is an unfair and deceptive business practice. TI is not responsible or liable for any such statements.

TI products are not authorized for use in safety-critical applications (such as life support) where a failure of the TI product would reasonably be expected to cause severe personal injury or death, unless officers of the parties have executed an agreement specifically governing such use. Buyers represent that they have all necessary expertise in the safety and regulatory ramifications of their applications, and acknowledge and agree that they are solely responsible for all legal, regulatory and safety-related requirements concerning their products and any use of TI products in such safety-critical applications, notwithstanding any applications-related information or support that may be provided by TI. Further, Buyers must fully indemnify TI and its representatives against any damages arising out of the use of TI products in such safety-critical applications.

TI products are neither designed nor intended for use in military/aerospace applications or environments unless the TI products are specifically designated by TI as military-grade or "enhanced plastic." Only products designated by TI as military-grade meet military specifications. Buyers acknowledge and agree that any such use of TI products which TI has not designated as military-grade is solely at the Buyer's risk, and that they are solely responsible for compliance with all legal and regulatory requirements in connection with such use.

TI products are neither designed nor intended for use in automotive applications or environments unless the specific TI products are designated by TI as compliant with ISO/TS 16949 requirements. Buyers acknowledge and agree that, if they use any non-designated products in automotive applications, TI will not be responsible for any failure to meet such requirements.

Following are URLs where you can obtain information on other Texas Instruments products and application solutions:

Products		Applications	
Audio	www.ti.com/audio	Communications and Telecom	www.ti.com/communications
Amplifiers	amplifier.ti.com	Computers and Peripherals	www.ti.com/computers
Data Converters	dataconverter.ti.com	Consumer Electronics	www.ti.com/consumer-apps
DLP® Products	www.dlp.com	Energy and Lighting	www.ti.com/energy
DSP	dsp.ti.com	Industrial	www.ti.com/industrial
Clocks and Timers	www.ti.com/clocks	Medical	www.ti.com/medical
Interface	interface.ti.com	Security	www.ti.com/security
Logic	logic.ti.com	Space, Avionics and Defense	www.ti.com/space-avionics-defense
Power Mgmt	power.ti.com	Transportation and Automotive	www.ti.com/automotive
Microcontrollers	microcontroller.ti.com	Video and Imaging	www.ti.com/video
RFID	www.ti-rfid.com		
OMAP Mobile Processors	www.ti.com/omap		
Wireless Connctivity	www.ti.com/wirelessconnectivity		
		u Hama Dawa	- 0 - 4

TI E2E Community Home Page

e2e.ti.com

Mailing Address: Texas Instruments, Post Office Box 655303, Dallas, Texas 75265 Copyright © 2011, Texas Instruments Incorporated