

AA30S/D/T Series

30W Single, Dual, and Triple Output AC-DC Power Module

FEATURES

- Encapsulated compact AC-DC power supply
- · Single-, Dual, and Triple Output Models
- Over Load and Over Voltage Protection
- 3 Mounting Package Versoin:
 - Solder pins for direct PCB mount
 - Screw terminal block for chassis mount
- DIN-Rail Mounting
- Universal Input voltage range 85-264 VAC, 47-440 Hz
- 3kVAC Isolatoin, Protection Class II level
- UL/UL/IEC/EN 60950-1 Certified, CE Marked
- UL508 Approval (Selective)
- · Lead free, RoHs Compliant
- 3 Year Product Warranty

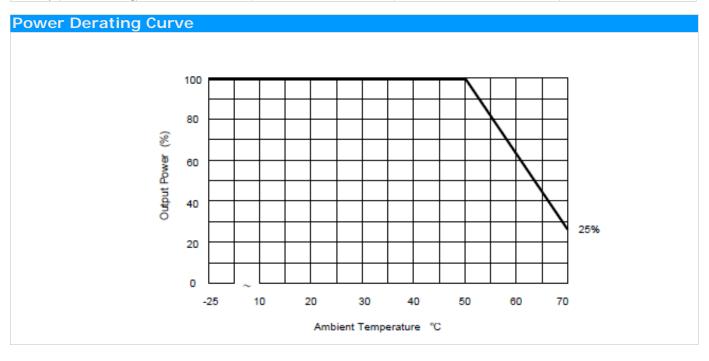
The AA30S/D/T series , isolated fully encapsulated 30W AC/DC power module with 3,000VAC isolation. With Universal input voltage 85-264VAC and International safety approvals, these power modules are ideal for applications in commercial and industrial electronic equipment. These isolated AC/DC converters are the latest offering from a world leader in power systems technology and manufacturing — Delta Electronics, Inc. With creative design technology and optimization of component placement, these converters possess outstanding electrical and thermal performance, as well as extremely high reliability under highly stressful operating conditions. industrial electronic equipment

Model List		0 / /					F(C :		
Model Number	Output Voltage	Output	Current	Input C		Max. capacitive	Efficiency	111 60050-1	UL508
Wodernumber	voitage			115VA(Load	(typ.)	UL60950-1 Approval	Approva
		Max.	Peak	@Max. Load	@No Load		@Max. Load	Дрргочаг	Thhiore
	VDC	mA	mA	mA(typ.)	mA(typ.)	μF	%		
AA30S0500A	5	6000		557	60	8000	78	0	0
AA30S1200A	12	2500		543	60	3900	80	0	0
AA30S1500A	15	2000		543	60	3900	80	0	0
AA30S2400A	24	1250		543	60	1500	80	0	0
AA30S4800A	48	625		543	60	1000	80	0	0
AA30D1212A	±12	±1300		565	60	*1500	80	0	0
AA30D1515A	±15	±1000		543	60	*1500	80		
AA30D0512A	*5	3000	4500	572	60	3900	76		
AA30D051ZA	*12	1250	1800	5/2	60	1500	70	0	
	*5	3000	4500	572		2200			
AA30T051212A	12	600	900		60	1500	76	0	
	-12	-600	900			1500			
	*5	3000	4500	572		2200	76	0	
AA30T121205A	12	1000	1500		60	1500			
	-12	-250	500			1500			
	*5	3000	4500			2200			
AA30T051515A	15	500	750	572	60	1500	76	0	
	-15	-500	750			1500			
	*5	4500	6000			2200			
AA30T050312A	+3.3	1000	1500	588	60	2200	71	0	
	+12	250	500			1500			
	*3.3	4000	5300			2200			
AA30T030512A	+5	1500	2000	483	60	2200	71	0	
	+12	250	500			1500			

^{*} Output floating (note 6)

^{*} For each output

Input Characteristics					
Parameter	Model	Min.	Тур.	Max.	Unit
Input Voltage Range		85		264	VAC
Input Frequency Range	All Models	47		440	Hz
Input Voltage Range		120		370	VDC
nrush Current (Cold Start at 25°C)	115VAC			20	Α
	230VAC			40	Α


Output Charact	eristi	ics									
Parameter			Conditions	Min.	Тур.	Max.	Unit				
		Single / Dual Output				±1.0	±2.0	%			
Output Voltage Accuracy		Dual Bositiva / Triple Output		Vo1		±1.0	±2.0	%			
		Dual Positive /	Dual Positive / Triple Output Vo2&Vo3			±3.0		%			
Line Regulation		\	/in=Min. to Max.			±0.2	±1.0	%			
			Single Outpo	ut Models		±0.5	±1.0	%			
Load Regulation		lout=Min. to Max.	Dual Outpu	t Models		±2.5	±5.0	%			
Load Regulation		Triple Outp	Triple Output	Vo1		±2.5	±5.0	%			
			Models	Vo2&Vo3		±4.0		%			
Cross Regulation-	Vo1	Measured output Io = 20% to 100% of rated load				±2.0		%			
Dual / Triple Output	Vo2	Other output		±5.0		%					
Models	Vo3	Other outpu		±5.0		%					
Ripple & Noise (20MHz)		3.3V & 5VDC Output Models				1.5	1.8	$%V_{PP}$ of Vo			
Ripple & Noise (2010H2)		Other Output Models				1.0	1.3	$%V_{PP}$ of Vo			
Minimum Load	Minimum Load		Single-,Dual-Output Models and Main Output Triple Output Models			10		%Inom.			
		Auxiliary Outputs of Triple Output Models				20		%Inom.			
Over Voltage Protection		Zener diode clamp				120		% of Vo			
Temperature Coefficient						±0.02		%/°C			
Overshoot							5	% Vout			
Current Limitation			back, auto-recovery ad condition may ca		105			% Inom.			
Short Circuit Protection			Hiccup mo	ode, indefinite (a	(automatic recovery)						

General Characte	eristics				
Parameter	Conditions	Min.	Тур.	Max.	Unit
I/O Isolation Voltage	Input to Output, 60 Seconds	3000			VACrms
I/O Isolation Resistance	500 VDC	100			ΜΩ
Switching Frequency			100		KHz
Hold-up Time			20		ms
MTBF (calculated)	MIL-HDBK-217F@25°C, Ground Benign	200,000			Hours
EMC Emission	Conducted and radiated	EN 55011 cla	ass B, EN 55022	class B, FC	C part 15 class B
	Standard	Specific	ation Requireme	ent	Performance Criteria
	EN61000-4-2	Air ±8KV Cont. ±4KV		В	
	EN61000-4-3	80~1000MHz, 10V/m 80% AM, 1KHz modulation			А
TMC Immunity oppording	EN61000-4-4	AC port ±2KV DC, SL, TL ±2KV not less than 1 min.			В
EMC Immunity according EN61000-6-1	EN61000-4-5	1.2/50uS(8/20µS) AC dif. ±1KV DC ±0.5KV			В
LN01000-0-1	EN61000-4-6	0.15~80MHz, 10Vrms (functional earth ports included) 80% AM, 1KHz modulation			В
	EN61000-4-8	50Hz/60Hz, 30A/m			Α
	-1101000 111	30%, 10ms			В
	EN61000-4-11	60%, 100ms, 95%, 5000ms			С
Protection Class II			ing IEC/EN 6053		
Cofety Americals		cUL/UL 60950-1,IEC/EN 60950-1			
Safety Approvals		UL508 fo	or selective mode	els	

Recommended Input Fuse						
All Models						
Built-in Fuse 3.5A / 250VAC						
External Fuse (Recommended)	1.5A Slow – Blow Type					

Environmental Specification	ns		
Parameter		Conditions	
Temperature Range (operational)	Ambient	-25°C	+70°C
Storage Temperature Range		-40°C	+85°C
Over Temperature Protection		at 90°C (automatic recovery at 67°C)	
Cooling		Free-Air convection	
Humidity (non condensing)			95 % rel. H

Notes

- All specifications typical at Ta=+25°C, resistive load, 115VAC, 60Hz input voltage and after warm-up time rated output current unless otherwise noted.
- 2 Ripple & Noise measurement bandwidth is 0~20 MHz
- These power modules require a minimum output loading to maintain specified regulation, operation under no-load conditions will not damage the power supplies however they may not meet all listed specifications.
- 4 Other input and output voltage may be available, please contact us for custom solution
- 5 Peak current can't be drawn from all output at the same time.
- 6 Floating (or isolated) output of a power supply that is not connected to any other output.
- 7 Specifications are subject to change anytime without notice

Mechancial Drawing PCB Mounting 6.0[0.24] 21.7[0.85] 0.7[0.03] Ø1.0 [Ø0.04] 26.75[1.05] Mounting M4.0 Thread .45 [1.24] **Bottom View** 55.88 [2.20] 63.5 [2.50]

Pin Connections								
Pin	Single	Dual (±12, ± 15)	Dual (0512)	Triple	Triple (050312, 030512)			
1	AC(N) – AC Neutral							
2	AC(L) – AC Line							
3	+Vo ut	+Vout	+Vout2	+Vout2	+Vout2			
4	N	o Pin	+Vout1	+Vout1	+Vout1			
5	-Vou t	Commo n	-Vout2	Com. 2/3	Com. 2/3			
6	N	o Pin	-Vout1	-Vout1	-Vout1			
7	NC	-Vout	NC	-Vout3	+Vout3			

NC: No Connection

- ► All dimensions in mm (inches)
- ►Tolerance: ±0.5 (±0.02)
- ▶Pin diameter ⇔ 1.0 ±0.1 (0.04±0.004)

Physical Outline

Case Size 88.9x63.5x21.7mm (3.50x2.50x0.85 inches)

Case Material Plastic resin + Fiberglass (flammability to UL 94V-0 rated)

Pin Material Copper Alloy with Gold Plate Over Nickel Subplate

Weight 177g

Mechancial Drawing Chassis Mounting (Option code, suffix C) ф ⊗ ⊗ 63.8 [2.51] Top view POWER"GOOD"INDICATOR 100.0 [3.94] 112.0 [4.41] 92.0 [3.62] 10.0 [0.39]

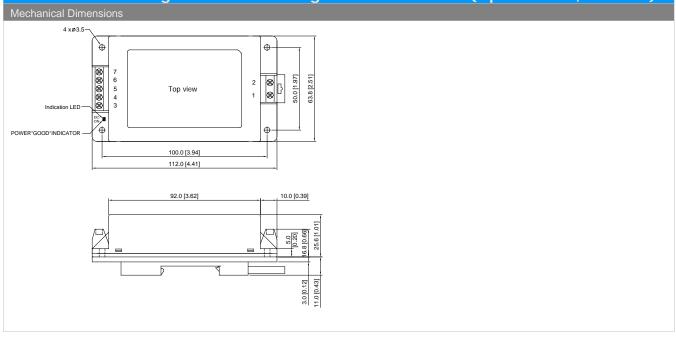
minal	Single	Dual (±12, ±15)	Dual (0512)	Triple	Triple (050312, 030512)
1			AC(N)	- AC Neut	ral
2	AC(L) – AC Line				
3	+Vout	+Vout	+Vout2	+Vout2	+Vout2
4		NC	+Vout1	+Vout1	+Vout1
5	-Vout	Common	-Vout2	Com. 2/3	Com. 2/3
6	NC		-Vout1	-Vout1	-Vout1
7	NC	-Vout	NC	-Vout3	+Vout3
	1 2 3 4 5	1 2 3 +Vout 4 5 -Vout 6	minal Single (±12, ±15) 1	minal Single (±12, ±15) Dual (0512) 1 AC(N) - 2 AC(L) 3 +Vout +Vout 2 4 NC +Vout1 5 -Vout Common -Vout2 6 NC -Vout1	minal Single $(\pm 12, \pm 15)$ Dual (0512) Triple 1 AC(N) – AC Neutron AC(L) – AC Line AC(L)

NC: No Connection

- ► All dimensions in mm (inches)
- ► Tolerance: X.X±0.5 (X.XX±0.02)

X.XX±0.25 (X.XXX±0.01)

▶ Pin pitch tolerance: ±0.25 (0.01)

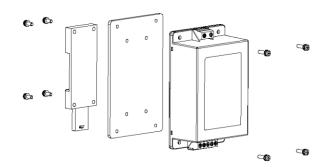

Physical Outline

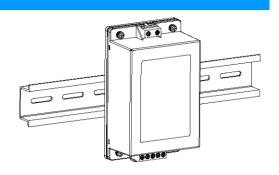
Case Size : 112.0x63.8x25.6mm (4.41x2.51x1.01 inches)

Case Material : Plastic resin + Fiberglass (flammability to UL 94V-0 rated)

Weight : 191g

Mechancial Drawing Chassis Mounting with DIN Rail Kit (Option code, suffix D)


Physical Outline


Case Size : 112.0x63.8x25.6mm (4.41x2.51x1.01 inches)

Case Material : Plastic resin + Fiberglass (flammability to UL 94V-0 rated)

Weight : 245g

DIN-Rail Mounting Kit

Part Num	Part Numbering System										
Α	A	30	Т	05	03	12	A				
Product typ	Family series	Watt	Number of Outputs	Output Voltage I	Output Voltage II	Output Voltage III	Option Code				
AC/DC Power Module	Industrial application	30 - 30W	S - Single	05 - 5V	00 - not applicable	05 – 5V	A - PCB Mount				
			D - Dual	12 - 12V	12 - 12V	12 - 12V	C - Chassis Mount				
			T - Triple	15 - 15V	15 - 15V	15 - 15V	D - Din Rail Mount				
				24 - 24V	03 – 3.3V						
				48 - 48V	05 - 5V						
				03 – 3.3V							

CONTACT: www.deltaww.com/dcdc

USA: Europe: Telephone: Phone: +

East Coast: 978-656-3993 West Coast: 510-668-5100 Fax: (978) 656 3964

Email: DCDC@delta-corp.com

Asia & the rest of world: -31-20-655-0967 Telephone: +886 3 4526107

Phone: +31-20-655-0967 Telephone: +886 3 4526 ext 6220~6224 Email: DCDC@delta-es.com Fax: +886 3 4513485

Email: DCDC@delta.com.tw

WARRANTY

Delta offers a three(3) years limited warranty. Complete warranty information is listed on our web site or is available upon request from Delta.

Information furnished by Delta is believed to be accurate and reliable. However, no responsibility is assumed by Delta for its use, nor for any infringements of patents or other rights of third parties, which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of Delta. Delta reserves the right to revise these specifications at any time, without notice