INTEL CORP {UP/PRPHLS} &L7E D WN 482bL75 012LA8L ?4L mE ITLL

intel ® 80286

MICROPROCESSOR WITH MEMORY
MANAGEMENT AND PROTECTION
(80286-12, 80286-10, 80286-8)

m High Performance HMOS ill Technology = Two 8086 Upward Compatible

. Operating Modes:
. L_a:gseh:e‘;':;;:%;?s}cal — 8086 Real Address Mode
-1 Gigabyte Virtual per Task — Protected Virtual Address Mode

m Integrated Memory Management, Four- B Compiete System Development

Level Memory Protection and Support Support:
for Virtual Memory and Operating - Assembler, PL/M, Pascal and
Systems FORTRAN
i i u Avallable in:
" s ﬁi"gi‘;;ﬁﬂ}g;’; Interface — 68-Pin PLCC (Plastic Leaded Chip
Carrier)
m Industry Standard O.S. Support: — 68-Pin PGA (Pin Grid Array)
— MS-DOS"*, UNIX**, XENIX*, IRMX® (See Packaging Spec, Order #231368)

m Optional Processor Extension:
— 80287 High Performance 80-bit
Numeric Data Processor

The 80286 is an advanced, high-performance microprocessor with specially optimized capabilities for multiple
user and multi-tasking systems. The 80286 has built-in memory protection that supports operating system and
task isolation as well as program and data privacy within tasks. A 12.5 MHz 80286 provides six times or more
throughput than the standard 5 MHz 8086. The 80286 includes memory management capabilities that map 230
(one gigabyte) of virtual address space per task into 224 bytes (16 megabytes) of physical memory.

The 80286 is upward compatible with 8086 and 88 software. Using 8086 real address mode, the 80286 is
object code compatibie with existing 8086, 88 software. In protected virtuat address mode, the 80286 is source
code compatible with 80886, 88 software and may require upgrading to use virtual addresses supported by the
80286’s integrated memory management and protection mechanism. Both modes operate at full 80286 per-
formance and execute a superset of the 8086 and 88 instructions.

The 80286 provides spscial operations to support the efficient implementation and execution of operating
systems. For example, one instruction can end execution of one task, save its state, switch to a new task, load
its state, and start execution of the new task. The 80286 also supports virtual memory systems by providing a
segment-not-present exception and restartable instructions.

*XENIX and MS-DOS are trademarks of Microsoft Corp.
**UNiIX is a trademark of UNIX Systems Laboratories.

———————————————————————————) e — o — = -~
: : ADONESS ! Az - Ae
LATCMED AND DMIVERS 2. 410
oy L :
ADORESS
ADOER] | PREFETCHER ::'Y!I:’M &’l::
s o o M E
————— t \ BUS CONTROL A 81. 50 cODMYA
uf:'ut SEGRENT ' H LOCK. m.0a
CHECKER zze i |
J_L_—"> DATA TRANSCEIVERY O - Oy
T])
zzzzz=={¥-==zz=22] k5 ! sovre !
‘; I PETCH t
A 1 ausue BUS UMIT (B
| Lo e up e peghbel s a
CONTRO : r— == - v fe—— nEsET
L maTEToN | 1
= ves
c : - BUELE OECODEN e vee
38y 4 e e e 1 Jowcar
AN BN
wn' ERAOR 210253-1

Figure 1. 80286 internal Block Diagram

September 1993

2-60 Order Number: 210253-018

B 432L175 012L8&2 LA W ITLL

CORP {UP/PRPHLS} &?E D

INTEL

80286

P.C. Board Views—As viewed from the component

side of the P.C. board.

Component Pad Views—As viewed from underside of

component when mounted on the board.

3l

Y..
]
> =
&

Az 18 [0

210253-50

SS, o0
®q 10
sa 0

o 50

1a v

20 sa

£l sa

¥10 {q

10 Houy3

<10 JouNy

riq i

s16 90

e %0

wa v

own o
«w 20
e 10

S o

geSr9r25%
Km -3,)
8zx3d¥TLIX
EEEEEEEEEER
PR36006000®0
e o0
®® ee
@® ®6
9 °oe
) @0
1) e
@3 o))
GO0 ERR6 T
ﬁ®9@@®@ee@
Fyd BB
w_wunvvmm_m_m
8
3Bgg 238k
] 2 2
BossBBat
[©030R200
PRIOORPOO
Y
o0
oy
Q9
R®
e
®®
20300 0RRROE
I rrrre

Brgg13238%

<z

99 822523
AVHEY QIS Mid

A3

210253-3

oy ey

Siv Iy
v gy
siY 0TV
1zv SSa
v szy
AI¥3d 08

1S N

Pié NO.1T MARK

Figure 2. 80286 Pin Configuration

2-61

80286

INTEL CORP {UP/PRPHLS?

L7E D

intgl.

Table 1. Pin Description

The following pin function descriptions are for the 80286 microprocessor :

Symbol

Type

Name and Function

CLK

SYSTEM CLOCK provides the fundamental timing for 80286 systems. It is divided by two
inside the 80286 to generate the processor clock. The internal divide-by-two circuitry can
be synchronized to an external clock generator by a LOW to HIGH transition on the RESET
input.

D1s-Do

170

DATA BUS inputs data during memaory, 1/0, and interrupt acknowledge read cycles;
outputs data during memory and |/O write cycles. The data bus is active HIGH and floats to
3-state OFF during bus hold acknowledge.

Az3-Ag

ADDRESS BUS outputs physical memory and 1/0 port addresses. A0 is LOW when data is
to be transferred on pins Dy_g. Apg~A;g are LOW during I/0 transfers. The address busis
active HIGH and floats to 3-state OFF during bus hold acknowledge.

BUS HIGH ENABLE indicates transfer or data on the upper byte of the data bus. Dy5_g.
gig%t-bit oriented devices assigned to the upper byte of the data bus would normally use

HE to condition chip select functions. BHE is active LOW and floats to 3-state OFF during
bus hold acknowledge.

HE and A0 Encodings

alue A0 Value Function

1 Byte transfer on upper half of data bus (Dy5-Dg)
0 Byte transfer on lower half of data bus (D;y_q)
1 1 Will never ocour

'/

0 0 Word transfer
0

1

BUS CYCLE STATUS indicates initiation of a bus cycle and, along with M/T10 and COD/
INTA, defines the type of bus cycle. The busisin a Tg state whenever one or both are LOW,
51 and 50 are active LOW and float to 3-state OFF during bus hold acknowledge.

80286 Bus Cycle Status Definition

COD/INTA /10 81 Bus Cycle Initiated

0 (LOwW) Interrupt acknowledge
Will not occur

Will not occur

None; not a status cycle
IF A1 = 1 then halt; else shutdown
Memory data read
Memory data write
None; not a status cycle
Will not occur

1/0 read

1/0 write

None; not a status cycle
Will not oceur

Memory instruction read
Will not occur '
None; not a status cycle

(HIGH)

e e e Y o N e Yo R o e R e R =
L OO Nt 0O Rau00 2200
OB OB OO A0 O OO gl

M/10

MEMORY 1/0 SELECT distinguishes memory access from 1/0 access. If HIGH during Tg, a
memory cycle or a halt/shutdown cycle is in progress. If LOW, an I/0 cycle or an interrupt
acknowledge cycle is in progress. M/10 floats to 3-state OFF during bus hold acknowledge.

COD/INTA

CODE/INTERRUPT ACKNOWLEDGE distinguishes instruction fetch cycles from memory
data read cycles. Also distinguishes interrupt acknowledge cycles from 1/0 cycles. COD/
INTA floats to 3-state OFF during bus hold acknowledge. its timing is the same as M/10.,

LOCK

BUS LOCK indicates that other system bus masters are not to gain control of the system
bus for the current and the following bus cycle. The LOCK signal may be activated explicitly
by the “LOCK" instruction prefix or automatically by 80286 hardware during memory XCHG
instructions, interrupt acknowledge, or descriptor tabie access. LOCK is active LOW and
floats to 3-state OFF during bus hold acknowledge.

READY

BUS READY terminates a bus cycle. Bus cycles are extended without limit until terminated
by READY LOW. READY is an active LOW synchronous input requiring setup and hold

_times relative to the system clock be met for correct operation. READY is ignored during

bus hold acknowledge.

2-62

M 4326175 012L4643 519 MR ITLL

INTEL CORP {UP/PRPHLS} &L?E D ME 4825175 012L38Y4Y 455 WR ITLY

| ntel o 80286

Table 1. Pin Description (Continued)

Symbol Type Name and Function
HOLD 1 BUS HOLD REQUEST AND HOLD ACKNOWLEDGE control ownership of
HLDA (o] the 80286 local bus. The HOLD input allows another local bus master to

request control of the local bus. When control is granted, the 80286 will float
its bus drivers to 3-state OFF and then activate HLDA, thus entering the bus
hold acknowledge condition. The local bus will remain granted to the
requesting master until HOLD becomes inactive which results in the 80286
deactivating HLDA and regaining control of the local bus. This terminates the
bus hold acknowledge condition. HOLD may be asynchronous to the system
clock. These signals are active HIGH.

INTR] INTERRUPT REQUEST requests the 80286 to suspend its current program
- execution and service a pending external request. Interrupt requests are
masked whenever the interrupt enable bit in the flag word is cleared. When
the 80286 responds to an interrupt request, it performs two interrupt
acknowladge bus cycles to read an 8-bit interrupt vector that identifies the
source of the interrupt. To assure program interruption, INTR must remain
active until the first interrupt acknowledge cycle is completed. INTR is
sampled at the beginning of each processor cycle and must be active HIGH
at least two processor cycles before the current instruction ends in order to
interrupt before the next instruction. INTR is level sensitive, active HIGH, and
may be asynchronous to the system clock. .

NMI | NON-MASKABLE INTERRUPT REQUEST interrupts the 80286 with an
internally supplied vector value of 2. No interrupt acknowledge cycles are
performed. The interrupt enable bit in the 80286 flag word does not affect this
input. The NM! input is active HIGH, may be asynchronous to the system
clock, and is edge triggered after internal synchronization. For proper
recognition, the input must have been previously LOW for at least four system
clock cycles and remain HIGH for at least four system clock cycles.

PEREQ | PROCESSOR EXTENSION OPERAND REQUEST AND ACKNOWLEDGE
PEACK o] extend the memory management and protection capabilities of the 80286 to
processor extensions. The PEREQ input requests the 80286 to perform a
data operand transfer for a processor extension. The PEACK output signals
the processor extension when the requested operand is being transferred.
PEREQ is active HIGH and floats to 3-state OFF during bus hold
acknowledge. PEACK may be asynchronous to the system clock. FEACK is

active LOW.
BUSY 1 PROCESSOR EXTENSION BUSY AND ERROR indicate the operating
ERROA 1 condition of a processor extension to the 80286. An active BUSY input stops

80286 program execution on WAIT and some ESC instructions until BUSY
becomes inactive (HIGH). The 80286 may be interrupted while waiting for
BUSY to become inactive. An active EHH%ﬁ input causes the 80286 to
perform a processor extension interrupt when executing WAIT or some ESC
instructions. These inputs are active LOW and may be asynchronous to the
system clock. Thase inputs have intemal pull-up resistors.

2-63

INTEL CORP {UP/PRPHLS} L7E D ME 482L175 012L885 39) mE ITL)

80286 i ntel o

Table 1. Pin Description (Continued)

Symbol Type Name and Function

RESET | SYSTEM RESET clears the internal logic of the 80286 and is active HIGH.
The 80286 may be reinitialized at any time with a LOW to HIGH transition on
RESET which remains active for more than 16 system clock cycles. During
RESET active, the output pins of the B0286 enter the state shown below:

80286 Pin State During Reset
Pin Value Pin Names
1 (HIGH) 50, 51, PEACK, A23-A0, BRE, [LOCK
0 (LOW) M/13, COD/INTA, HLDA (Note 1)
3-state OFF Dy5-Dg

Operation of the 80286 begins after a HIGH to LOW transition on RESET.
The HIGH to LOW fransition of RESET must be synchronous to the system
clock. Approximately 38 CLK cycles from the trailing edge of RESET are
required by the 80286 for internal initialization before the first bus cycle, to
fetch code from the power-on execution address, occurs.

A LOW to HIGH transition of RESET synchronous to the system clock will
end a processor cycle at the second HIGH to LOW transition of the system
clock. The LOW to HIGH transition of RESET may be asynchronous to the
system clock; however, in this case it cannot be predetermined which phase
of the processor clock will occur during the next system clock period.
Synchronous LOW to HIGH transitions of RESET are required only for
systems where the processor clock must be phase synchronous to another

clock.
Vss I SYSTEM GROUND: 0 Volts.
Voo i SYSTEM POWER: + 5 Voit Power Supply.
CAP | SUBSTRATE FILTER CAPACITOR: a 0.047 uF + 20% 12V capacitor must

be connected between this pin and ground. This capacitor filters the output of
the internal substrate bias generator. A maximum DC leakage current of 1 xA
is allowed through the capacitor.

For correct operation of the 80286, the substrate bias generator must charge
this capacitor to its operating voitage. The capacitor chargeup time is 5
milliseconds (max.) after Vo and CLK reach their specified AC and DC
parameters. RESET may be applied to prevent spurious activity by the CPU
during this time. After this time, the 80286 procassor clock can be
synchronized to another clock by pulsing RESET LOW synchronous to the
systemn clock.

NOTE:
1. HLDA is only Low if HOLD is inactive (Low).

2-64 I

INTEL CORP {UP/PRPHLS}

intel.

FUNCTIONAL DESCRIPTION

Introduction

The 80286 is an advanced, high-performance micro-
processor with specially optimized capabilities for
multiple user and multi-tasking systems. Depending
on the application, a 12.5 MHz 80286’s performance
is up to six times faster than the standard 5 MHz
8086's, while providing complete upward software
compatibility with inte!’s 8086, 88, and 186 family of
CPU’s.

The 80286 operates in two modes: 8086 real ad-
dress mode and protected virtual address mode.
Both modes execute a superset of the 8086 and 88
instruction set.

In 8086 real address mode programs use real ad-
dresses with up to one megabyte of address space.
Programs use virtual addresses in protected virtual
address mode, also called protected mode. In pro-
tected mode, the 80286 CPU automatically maps 1
gigabyte of virtual addresses per task into a 16
megabyte real address space. This mode also pro-
vides memory protection to isolate the operating
system and ensure privacy of each tasks' programs
and data. Both modes provide the same base in-
struction set, registers, and addressing modes.

The following Functional Description describes first,
the base 80286 architecture common to both
modes, second, 8086 real address mods, and third,
protected mode.

80286 BASE ARCHITECTURE

The 8086, 88, 186, and 286 CPU family all contain
the same basic set of registers, instructions, and

L?E D

80286

addressing modes. The 80286 processor is upward
compatible with the 8086, 8088, and 80186 CPU's.

Register Set

The 80286 base architecture has fifteen registers as
shown in Figure 3. These registers are grouped into
the following four categories:

General Registers: Eight 16-bit general purpose
registers used to contain arithmetic and logical oper-
ands. Four of these (AX, BX, CX, and DX) can be
used either in their entirety as 16-bit words or split
into pairs of separate 8-bit registers.

Segment Registers: Four 16-bit special purpose
registers seloct, at any given time, the segments of
memory that are immediately addressable for code,
stack, and data. (For usage, refer to Memory Organi-
zation.)

Base and Index Reglsters: Four of the general pur-
pose registers may also be used to determine offset
addresses of operands in memory. These registers
may contain base addresses or indexes to particular
locations within a segment. The addressing mode
determines the specific registers used for operand
address calculations.

Status and Control Registers: The 3 16-bit special
purpose registers in figure 3A record or control cer-
tain aspects of the 80286 processor state including
the Instruction Pointer, which contains the offset ad-
dress of the next sequential instruction to be execut-
ed.

88T SPECIAL s °
REGISTEA REGISTER
NAME FUNCTIONS
cs CODE SEGMENT SELECTOR
7 o7 [
bs DATA SEGMENT SELEGTOR
BYTE csSABLE AX| AH AL MULTIPLY/DIVIDE
ADDRESSABI 1/0 INSTRUCTIONS ss STACK SEGMENT SELECTOR
(s.8rm bx DH DL
REGISTER
NAMES) ES EXTRA SEGMENT SELECTOR
SHOWN) x| o oL] LOOP/SHIFT/REPEAT/COUNT
SEGMENT REGISTERS
ex] BM 8L
BASE REGISTERS
BP 18 °
s F STATUS WORD
INDEX REGISTERS
[} P INSTRUCTION POINTER
s } STACK POINTER STATUS AND CONTROL
v 5 REGISTERS
GENERAL
REGISTERS
Figure 3. Register Set
2-65

M 44526175 0126L&&L 228 MR ITLL

INTEL CORP {UP/PRPHLS?

80286

L?PE D

B 4326175 DL2LA&? 1LY WA ITLYL

intgl.

e e]

o T % o e T T R s R

=]

VO PRIVILIGE LEVEL
NESTED TASK ALAG

o &‘X‘\‘l\\\\‘l\\\\‘t\\\\‘#\\\\‘l\\\\\l\\\\‘{\\\\‘l\\\\\l\\\\\l\\\\‘f\\\\‘{ I

AW srre sesenves

EMULATED

210253-4

Figure 3a. Status and Control Reglster Bit Functions

Flags Word Description

The Flags word (Flags) records specific characteris-
tics of the result of logical and arithmetic instructions
{bits 0, 2, 4, 8, 7, and 11) and controls the operation
of the 80286 within a given operating mode (bits 8
and 9). Flags is a 16-bit register. The function of the
flag bits is given in Table 2.

Instruction Set

The instruction set is divided into seven categories:
data transfer, arithmetic, shift/rotate/logical, string
manipulation, control transfer, high level instruc-
tions, and processor control. These categories are
summarized in Figure 4.

An 80286 instruction can reference zero, one, or two
operands; where an operand resides in a register, in

the instruction itself, or in memory. Zero-operand in- -

structions (e.g. NOP and HLT) are usually one byte
long. One-operand instructions (e.g. INC and DEC)
are usually two bytes long but some are encoded in
only one byte. One-operand instructions may refer-
ence a register or memory location. Two-operand
instructions permit the following six types of instruc-
tion operations:

—Register to Register
—Memory to Register
—Immediate to Register
—Memory to Memory
—Register to Memory
—Immediate to Memory

2-66

Table 2. Flags Word Bit Functions

Bit
Position

Function

0

CF

Carry Flag—Set on high-order bit
carry or borrow; cleared otherwise

2

PF

Parity Flag—Set if low-order 8 bits
of result contain an even number of
1-bits; cleared otherwise

AF .

Set on carry from or borrow to the
low order four bits of AL; cleared
otherwise

ZF

Zero Flag—Sat if result is zero;
cleared otherwise

SF

Sign Flag—Set equal to high-order
bit of result (0 if positive, 1 if negative)

OF

Overflow Flag—Set if result is a too-
large positive number or a too-small
negative number (excluding sign-bit)
to fitin destination operand; cleared
otherwise

TF

Single Step Flag—Once set, a sin-
gle step interrupt occurs after the
next instruction executes. TF is
cleared by the single step interrupt.

Interrupt-enable Flag—When set,
maskable interrupts will cause the
CPU to transfer control to an inter-
rupt vector specified location.

10

DF

Direction Flag—Causes string

instructions to auto decrement
the appropriate index registers
when set. Clearing DF causes

auto increment,

INTEL CORP {UP/PRPHLS} L?E D NN 482L275 012LA848S8 OTO MR ITLL

i nté ® 80286

Two-ltlap?rl;and tinsn_'ucl;i;ns I(e.g. InOV andt ADD) are ADDITION
usually three to six bytes long. Memory to memory
operations are provided by a special class of string ADD Add byte or word :
instructions requiring one to three bytes. For de- ADC Add byte or word with carry
tailed instruction formats and encodings refer to the INC Increment byte or word by 1
instruction set summary at the end of this document. AAA ASCII adjust for addition
. . \ DAA Decimal adjust for addition
For detailed operation and usage of each instruc- UBT ! :’ additi
tion, see Appendix of 80286 Programmer’s Refer- _ RACTIO
ence Manual (Order No. 210498) sus Subtract byte or word
GENERAL PURPOSE SB8 Subtract byte or word with borrow
MOV Move byte or word DEC Dacrement byte or word by 1
PUSH Push word onto stack NEG Negate byte or word
POP Pop word off stack ' cwp Compare byts or word
PUSHA Push alf registers on stack AAS ASCIi adjust for subtraction
POPA Pop all registers from stack DAS Decimal adjust for subtraction
XCHG Exchange byte or word MULTIPLICATION
XLAT Translate byte MUL Multiple byte or word unsigned
INPUT/OUTPUT IMUL Integer multiply byte or word
IN Input byte or word AAM ASCI| adjust for multiply
ouT Output byte or word DIVISION
ADDRESS OBJECT DV Divide byte or word unsigned
LEA Load effective address 1DV integer divide byte or word
LDS Load pointer usingDS AAD ASCI adjust for division
LES Load pointer using ES cBw Convert byte to word
FLAG TRANSFER CwD Convert word to doubleword
LAHF * Load AH register from flags Figure 4b. Arithmetic Instructions
SAHF Store AH register in flags
PUSHF Push flags onto stack LOGICALS
POPF Pop flags off stack NOT “Not" byte or word
_ Figure 4a. Data Transfer Instructions AND “And" byte or word
OR “Inclusive or” byte or word
MOVS Move byte or word string XOR "“Exclusive or” byt or word
INS input bytes or word string TEST “Test” byte or word
ouTs Output bytes or word string SHIFTS
CMPS Compare byte or word string SHL/SAL Shift logical/ arithmetic left byte or word
SCAS Scan byts or word string SHR Shift logical right byte or word
LODS Load byte or word string SAR Shift arithmetic right byte or word
STOS Store byte or word string ROTATES
REP Repeat ROL Rotate left byte or word
REPE/REPZ Repeat while equal/zero ROR Rotate right byte or word
REPNE/REPNZ Repeat while not equal/not zero RCL Rotate through carry left byte or word
Flgure 4c. String Instructions RCR Rotate through carry right byte or word

Figure 4d. Shift/Rotate Logical Instructions

I 2-67

INTEL CORP {UP/PRPHLS} L?7E D MR 482L175 01L2L889 T37? mm ITLL

80286 | intel o

CONDITIONAL TRANSFERS UNCONDITIONAL TRANSFERS
JA/INBE Jump if above/not below nor equal CALL Call procedure
JAE/INB Jump if above or equal/not below RET Return from procedure
JB/JNAE Jump if below/not above nor equal JMP Jump
JBE/JUNA Jump if below or equal/not above
JC Jump if carry ITERATION CONTROLS
JE/JZ Jump if equal/zero
JG/INLE Jump if greater/not less nor equal Loop Loop
JGE/JINL Jump if greater or equal/not less LOOPE/LOOPZ Loop if equal/zero
JL/INGE Jump if less/not greater nor equal LOOPNE/LOOPNZ Loop if not equal/not zero
JLE/JING Jump if less or equal/not greater JCXZ Jump if register CX = 0
JINC Jump if not carry
JNE/INZ Jump if not equal/not zero INTERRUPTS
JNO Jump if not overfiow
JNP/JPO Jump if not parity/parity odd INT Interrupt
JNS Jump if not sign INTO interrupt if overflow
JO Jump if overflow IRET Interrupt return
JP/JPE Jump if parity/parity even
JS Jump if sign
Figure 4e. Program Transfer Instructions
FLAG OPERATIONS Memory Organization
(S:Ig 22;1?._:?39 Memory is organized as sets o_f variable I_ength seg-
ments. Each segment is a linear contiguous se-
CmC Complement carry flag quence of up to 64K (216) 8-bit bytes. Memory is
STD Set direction flag addressed using a two component address (a point-
CcLD Clear direction flag er) that consists of a 16-bit segment selector, and a
ST Setinterrupt enable flag 1 §-b|t offset. The segment selector indicates the d_e—
- sired segment in memory. The offset component in-
cu Clear interrupt enable flag dicates the desired byte address within the segment.
EXTERNAL SYNCHRONIZATION
HLT Halt until interrupt or reset ;
WAIT Wait for BUSY not active 3 - :F
ESC Escape to extension processor 32-8IT POINTER
LOCK Lock bus during next instruction - —
NO OPERATION {_scauen _ormer J
NOP l No operation D e OPERAND
EXECUTION ENVIRONMENT CONTROL SUECTED |) Seowenr
LMSW Load machine status word
SMSwW Store machine status word
Figure 4f. Processor Control Instructions
ENTER Format stack for procedure entry L J,
LEAVE Restore stack for procedure exit v — “
BOUND Detects values outside prescribed range 210253-8
Figure 4g. High Level Instructions Figure 5. Two Component Address

2-68

INTEL

intgl.

CORP {UP/PRPHLS}

L7E D

80286

Table 3. Segment Reglster Selection Rules

Memory Segment Register Impiicit Segment
Reference Needed Used Selection Rule

Instructions Code (CS) Automatic with instruction prefetch

Stack Stack (SS) All stack pushes and pops. Any memory reference which uses BP
as a base register.

Local Data Data (DS) All data references except when relative to stack or
string destination

External (Global) Data Extra (ES) " Alternate data segment and destination of string operation

All instructions that address operands in memory
must specify the segment and the offset. For speed
and compact instruction encoding, segment selec-
tors are usually stored in the high speed segment
registers. An instruction need specify only the de-
sired segment register and an offset in order to ad-
dress a memory operand.

Most instructions need not explicitly specify which
segment register is used. The correct segment reg-
ister is automatically chosen according to the rules
of Table 3. These rules follow the way programs are
written (see Figure 6) as independent modules that
require areas for code and data, a stack, and access
to external data areas.

Special segment override instruction prefixes allow
the implicit segment register selection rules to be
overridden for special cases. The stack, data, and
extra segments may coincide for simple programs.
To access operands not residing in one of the four
immediately available segments, a full 32-bit pointer
or a new segment selector must be loaded.

Addressing Modes

The 80286 provides a total of eight addressing
modes for instructions to specify operands. Two ad-
dressing modes are provided for instructions that
operate on register or immediate operands:

Reglster Operand Mode: The operand is locat-
ad in one of the 8 or 16-bit general registers.

Immediate Operand Mode: The operand is in-
cluded in the instruction.

Six modes are provided to specify the location of an
operand in a memory segment. A memory operand
address consists of two 16-bit components: seg-
ment selector and offset. The segment selector is
supplied by a segment register either implicitly cho-
sen by the addressing mode or explicitly chosen by
a segment override prefix. The offset is calculated
by summing any combination of the following three
address elements:

the displacement {an 8 or 16-bit immediate val-
ue contained in the instruction)

the base (contents of either the BX or BP base
registers)

=1
]
cooe
MOOULE &
oATA
]]
]]
cooe cru
woonE 8
DATA L—-—- coos
1) L oaTA
!]
sTacx
. H o
SEOMENTY
AEGITERS
1]
']
PROCESS
0ATA
OCK ¥
!]
! |
PROCESS
0ATA
-1}
1 [l
| QG |
oy 210253-8

Figure 6. Segmented Memory Helps
Structure Software

the index (contents of either the Sl or DI index
registers)

Any carry out from the 16-bit addition is ignored.
Eight-bit displacements are sign extended to 16-bit
values.

Combinations of these three address elements de-
fine the six memory addressing modes, described
below.

Direct Mode: The operand’s offset is contained in
the instruction as an 8 or 16-bit displacement ele-
ment.

Register Indirect Mode: The operand’s offset is in
one of the registers Si, DI, BX, or BP.

Based Mode: The operand’s offset is the sum of an

8 or 16-bit displacement and the contents of a base
register (BX or BP).

2-69

B 442175 012L&90 759 A ITLY

INTEL CORP (UP/PRPHLS)

80286

Indexed Mode: The operand's offset is the sum of
an 8 or 16-bit displacement and the contents of an
index register (St or DI).

Based Indexed Mode: The operand’s offset is the
sum of the contents of a base register and an index
register.

Based Indexed Mode with Displacement: The op-
erand's offset is the sum of a base register's con-
tents, an index register's contents, and an 8 or 16-bit
displacement.

Data Types

The 80286 directly supports the following data
types:
Integer: A signed binary numeric valus con-
tained in an B-bit byte or a 16-bit
word. All operations assume a 2's
complement representation. Signed
32 and 64-bit integers are supported
using the Numeric Data Processor,
the 80287,

An unsigned binary numeric value
contained in an 8-bit byte or 16-bit
word.

A 32-bit quantity, composed of a
segment selector component and an
offset component. Each component
is a 16-bit word.

A contiguous sequence of bytes or
words. A string may contain from 1
byte to 64K bytss.

A byte representation of alphanu-
meric and control characters using
the ASCIl standard of character rep-
resentation.

BCD: A byte (unpacked) representation of
the decimal digits 0-9.

A byte (packed) representation of
two decimal digits 0-9 storing one
digit in each nibble of the byte.

Floating Point. A signed 32, 64, or 80-bit real num-
ber representation. (Floating point
operands are supported using the
80287 Numeric Processor).

Ordinal:

Pointer:

String:

ASCIl:

Packed BCD:

Figure 7 graphically represents the data types sup-
ported by the 80286.

1/0 Space

The I/0Q space consists of 64K 8-bit or 32K 16-bit
ports. I/Q instructions address the 1/0 space with

2-70

L?E D EE 482b175 0126891 bL95 EEITLL

a

intgl.
either an 8-bit port address, specified in the instruc-
tion, or a 16-bit port address in the DX register. 8-bit
port addresses are zero extended such that Ay5~Ag

are LOW. /O port addresses O0F8(H) through
O00FF(H) are reserved.

7
SIGNED
BYTE

SIGNOIT_____
MAGNITUDE

7
UNSIGNED
YTE

Luss
MAGMTUDE

A S |
SIGNED
WORD
SIGN BT+ -usB
MAGNITUDE

SIGNED 31 +3 +2 g *? [»
DOUBLE”" ”l”'l” l”'l” l' ”'l
WORD®
SIGN BITJ |- MSB I
MAGNITUDE
+7 +6 +5 +4 +3 +2 +1 []
SIGNED 47 3] [X
QUAD
WORD*
SIGN BIT /- MS8 J
MAGNITUDE

s+ [9

UNSIGNED
WORD

LMs8
MAGNITUDE

BINARY
cooenl" |" | I"'l 'I ”|"']
DECIMAL
®co) 22 mm mo
7 +N

ASCH
CHARACTER, cmaAcTEn.
v Va7

e F'T"] ["T'T”'[""l

CNAﬂACTEﬂn

MOST ls
SIGNIFICANT DIGIT WIF'CANT DIGIT
118 N o 7w Y erw 0 4
STAING I | I
BYTE'WORDN BYTE'WORD 1 BYTE WORD 0
an *3 +2 g * 1 [} °
POINTER
1]
SELECTOR OFFSEY

t9 +8 4T +F ¢35 4 +3 +2 1 L

el T T T T TTTTT]
210253-7

*Supported by 80287 Numeric Data Processor

Figure 7. 80286 Supported Data Types

INTEL CORP (UP/PRPHLS)

intgl.

G7E D EN 4826175 0126892 521 EEITLL

80286

Table 4. Interrupt Vector Assignments

Function imerrupt | Relted | o on:
Causing Exception?
Divide error exception 0 Div, IDIV Yes
Single step interrupt 1 All
NM! interrupt 2 INT 2 or NMi pin
Breakpoint interrupt 3 INT3
INTO detected overflow exception 4 INTO No
BOUND range exceaded exception 5 BOUND Yes
Invalid opcode exception 6 Any undefined opcode Yes
Processor axtension not available exception 7 ESC or WAIT Yes
Intel reserved-do not use 8-15
Processor extension error interrupt 16 ESC or WAIT
Intel reserved-do not use 17-31
User defined 32-255
Interrupts setting the interrupt flag bit (IF) in the flag word. All

An interrupt transfers execution to a new program
location. The old program address (CS:IP) and ma-
chine state (Flags) are saved on the stack to aliow
resumption of the interrupted program. Interrupts fall
into three classes: hardware initiated, INT instruc-
tions, and instruction exceptions. Hardware initiated
interrupts occur in response to an external input and
are classified as non-maskable or maskable. Pro-
grams may cause an interrupt with an INT instruc-
tion. Instruction exceptions occur when an unusual
condition, which prevents further instruction pro-
cessing, is detected while attempting to execute an
instruction. The return address from an exception
will always point at the instruction causing the ex-
ception and include any leading instruction prefixes.

A table containing up to 256 pointers defines the
proper interrupt service routine for each interrupt. In-
terrupts 0-31, some of which are used for instruc-
tion exceptions, are reserved. For each interrupt, an
8-bit vector must be supplied to the 80286 which
identifies the appropriate table entry. Exceptions
supply the interrupt vector internally. INT instructions
contain or imply the vector and allow access to all
256 interrupts, Maskable hardware initiated inter-
rupts supply the 8-bit vector to the CPU during an
interrupt acknowledge bus sequence. Non-maska-
ble hardware interrupts use a predefined internally
supplied vactor.

MASKABLE INTERRUPT (INTR)

The 80286 provides a maskable hardware interrupt
request pin, INTR. Software enables this input by

224 user-defined interrupt sources can share this in-
put, yet they can retain separate interrupt handlers.
An 8-bit vector read by the CPU during the interrupt
acknowledge sequence (discussed in System Inter-
face section) identifies the source of the interrupt.

Further maskable interrupts are disabled while serv-
icing an interrupt by resetting the IF bit as part of the
response to an interrupt or exception. The saved
flag word will reflect the enable status of the proces-
sor prior to the interrupt. Until the flag word is re-
stored to the flag register, the interrupt flag will be
zero unless specifically set. The interrupt return in-
struction includes restoring the flag word, thereby
restoring the original status of IF.

NON-MASKABLE INTERRUPT REQUEST (NMi)

A non-maskable interrupt input (NMI) is also provid-
ed. NMI has higher priority than INTR. A typical use
of NMI would be to activate a power failure routine.
The activation of this input causes an interrupt with
an internally supplied vector value of 2. No external
interrupt acknowledge sequence is performed.

While executing the NMI servicing procedure, the
80286 will service neither further NMI requests,
INTR requests, nor the processor extension seg-
ment overrun interrupt until an interrupt return (IRET)
instruction is executed or the CPU is reset. If NMI
occurs while currently servicing an NML, its presence
will be saved for servicing after executing the first
IRET instruction. IF is cleared at the beginning of an
NMI interrupt to inhibit INTR interrupts.

2-71

INTEL CORP (UP/PRPHLS)

80286

SINGLE STEP INTERRUPT

The 80286 has an internal interrupt that allows pro-
grams to execute one instruction at a time. It is
called the single step interrupt and is controlled by
the single step flag bit (TF) in the flag word. Once
this bit is set, an internal single step interrupt will
occur after the next instruction has been executed.
The interrupt clears the TF bit and uses an internally
supplied vector of 1. The IRET instruction is used to
set the TF bit and transfer control to the next instruc-
tion to be single stepped. '

Interrupt Priorities

When simultaneous interrupt requests occur, they
are processed in a fixed order as shown in Table 5.
Interrupt processing involves saving the flags, return
address, and setting CS:IP to point at the first in-
struction of the interrupt handler. If other interrupts
remain enabled they are processed before the first
instruction of the current interrupt handler is execut-
ed. The last interrupt processed is therafore the first
one serviced.

Table 5. Interrupt Processing Order

Order Interrupt
1 Instruction exception
2 Single step
3 NMI
4 Processor extension segment overrun
5 INTR
6 INT instruction

Initialization and Processor Reset

Processor initialization or start up is accomplished
by driving the RESET input pin HIGH. RESET forces
the 80286 to terminate all execution and local bus
activity. No instruction or bus activity will occur as
long as RESET is active. After RESET becomes in-
active and an internal processing interval elapses,
the 80286 begins execution in real address mode
with the instruction at physical location FFFFFO(H).
RESET also sets some registers to predefined val-
ues as shown in Table 6.

L?E D WH 482L175 0126893 4LE EEITLL

intgl.

Table 6. 80286 Initlal Register State after RESET

Flag word 0002(H)
Machine Status Word FFFO(H)
Instruction pointer FFFO(H)
Code segment FOOO(H)
Data segment 0000(H)
Extra segment 0000(H)
Stack segment 0000(H)

HOLD must not be active during the time from the
leading edge of RESET to 34 CLKSs after the trailing
edge of RESET. !

Machine Status Word Description

The machine status word (MSW) records when a
task switch takes place and controls the operating
mode of the 80286. It is a 16-bit register of which the
lower four bits are used. One bit places the CPU into
protected mode, while the other three bits, as shown
in Tabla 7, control the processor extension interface.
After RESET, this register contains FFFO(H) which
places the 80286 in 8086 real address mode.

Table 7. MSW Bit Functions

Bit
Position

0 PE

Name Function

Protected mode enable places the
80286 into protected mode and cannot
be cleared except by RESET.

1 MP | Monitor processor extension allows
WAIT instructions to cause a processor
extension not prasent exception

{number 7).

Emulate processor extension causes a
processor extension not prasant
exception (number 7) on ESC
instructions to allow emulating a
processor extension.

Task switched indicates the next
instruction using a processor extension
will cause exception 7, allowing software
to test whether the current processor
extension context belongs to the current
task.)

The LMSW and SMSW instructions can load and
store the MSW in real address mode. The recom-
mended use of TS, EM, and MP is shown in Table 8.

Table 8. Recommended MSW Encodings For Processor Extension Control

Instructions
TS | MP | EM Recommended Use Causing
Exception 7
0 0 0 Initial encoding after RESET. 80286 operation is identical to 8086, 88. None
0 0 1 No processor extension is available. Software will emulate its function. ESC
1 0 1 No processor extension is available. Software will emulate its function. The current ESC
processor extension context may belong to another task.
0 1 0 A processor extension exists. None
1 1 0 A processor extension exists. The current processor extension context may belongto | ESCor
another task. The Exception 7 on WAIT allows software to test for an error pending WAIT
from a previous processor extension operation.
2-72

INTEL CORP (UP/PRPHLS)

intgl.

Halt

The HLT instruction stops program execution and
prevents the CPU from using the local bus until re-
started. Either NM), INTR with IF = 1, or RESET will
force the 80286 out of halt. If interrupted, the saved
CS:IP will point to the next instruction after the HLT.

8086 REAL ADDRESS MODE

The 80286 executes a fully upward-compatible su-
perset of the 8086 instruction set in real address
mode. in real address mode the 80286 is object
code compatible with 8086 and 8088 software. The
real address mode architecture (registers and ad-
dressing modes) is exactly as described in the
80286 Base Architecture section of this Functional
Description.

Memory Size

Physical memory is a contiguous array of up to
1,048,576 bytes (one megabyte) addressed by pins
Ag through A;g and BHE. Azq through Az should be
ignored.

Memory Addressing

In real address mode physical memory is a contigu-
ous array of up to 1,048,576 bytes (one megabyte)
addressed by pins Ag through Aqg and BHE. Ad-
dress bits Agg-Az3 may not always be zero in real
mode. Apg—Apa should not be used by the system
while the 80286 is operating in Real Mode.

The selector portion of a pointer is interpreted as the
upper 16 bits of a 20-bit segment address. The lower
four bits of the 20-bit segment address are always
zero. Segment addresses, therefore, begin on multi-
ples of 16 bytes. See Figure 8 for a graphic repre-
sentation of address information.

All segments in real address mode are 84K bytes in
size and may be read, written, or executed. An ex-
ception or interrupt can occur if data operands or
instructions attempt to wrap around the end of a
segment (e.g. a word with its low order byte at offset
FFFF(H) and its high order byte at offset 0000(H). If,
in real address mode, the information contained in &
segment does not use the full 64K bytes, the unused
end of the segment may be overlayed by another
segment to reduce physical memory requirements.

Reserved Memory Locations

The B0286 reserves two fixed areas of memory in
real address mode (see Figure 9); system initializa-

80286

tion area and interrupt table area. Locations from
addresses FFFFO(H) through FFFFF(H) are re-
served for system initialization. tnitial execution be-
gins at location FFFFO(H). Locations 00000(H)
through 003FF(H) are reserved for interrupt vectors.

15 []
OFFSET
IWOO OFFSET ADORESS
h——} P
18 []
SEGMENT 00 SEGMENT
SELECTOR 9} ADDRESS
ADDER
0 o
20-8(T PHYSICAL
MEMORY ADDRESS
210253-8

L7E D B %82b175 012bLA94 3Ty BEITLL

Figure 8. 8086 Real Address Mode
Address Calculation

FFFFFH
RESET BOOTSTRAP
PROGRAM JUMP FFFFOM
L . 4
7 o . ’1 o
3FFH
INTERAUPT POINTER
FOR VECTOR 255 arcH
~ . ~N
’1 hr . o
; ™
INTERRUPT POINTER
FOR VECTOR 1 M
INTERRUPT POINTER kL
FOR VECTOR 0 oH
WNITIAL CS:P VALUE IS FOOO:FFFQ.
210253-8

Figure 9. 8086 Real Address Mode Initially
Reserved Memory Locations

2-73

INTEL CORP (UP/PRPHLS)

80286

LG?E D EE 482b175 0126895 230 MEITLY

intgl.

Table 9. Real Address Mode Addressing Interrupts

Function Interrupt Related Return Address
Number Instructions Before instruction?
Interrupt table limit too small exception 8 INT vector is not within table limit Yes
Processor extension segment overrun 9 ESC with memory operand extend- No
interrupt ’ ing beyond offset FFFF(H)
Segment overrun exception 13 Word memory reference with offset Yes
= FFFF(H) or an attempt to exe-
cute past the end of a segment
Interrupts PROTECTED VIRTUAL ADDRESS

Table 9 shows the interrupt vectors reserved for ex-
ceptions and interrupts which indicate an addressing
error. The exceptions leave the CPU in the state ex-
isting before attempting to execute the failing in-
struction (except for PUSH, POP, PUSHA, or POPA).
Refer to the next section on protected mode initiali-
zation for a discussion on exception 8.

Protected Mode Initialization

To prepare the 80286 for protected mode, the LIDT
instruction is used to load the 24-bit interrupt table
base and 16-bit limit for the protected mode interrupt
table. This instruction can also set a base and limit
for the interrupt vector table in real address mode.
After reset, the interrupt table base is initialized to
000000(H) and its size set to 03FF(H). These values
are compatible with 8086, 88 softwarse. LIDT should
only be executed in preparation for protected mode.

Shutdown

Shutdown occurs when a severe error is detected
that prevents further instruction processing by the
CPU. Shutdown and halt are externally signalled via
a halt bus operation. They can be distinguished by
A4 HIGH for halt and A4 LOW for shutdown. In real
address mode, shutdown can occur under two con-
ditions:

* Exceptions 8 or 13 happen and the IDT limit does

not include the interrupt vector.

® A CALL INT or PUSH instruction attempts to wrap
around the stack segment when SP is not even.

An NMI input can bring the CPU out of shutdown if
the IDT limit is at least 000F(H) and SP is greater
than 0005(H), otherwise shutdown can only be exit-
ed via the RESET input.

2-74

MODE

The 80286 executes a fully upward-compatible su-
perset of the 8086 instruction set in protected virtual
address mode (protected mode). Protected mode
also provides memory management and protection
mechanisms and associated instructions.

The 80286 enters protected virtual address mode
from real address mode by setting the PE (Protec-
tion Enable) bit of the machine status word with the
Load Machine Status Word (LMSW) instruction. Pro-
tected mode offers extended physical and virtual
memory address space, memory protection mecha-
nisms, and new operations to support operating sys-
tems and virtual memory.

All registers, instructions, and addressing modes de-
scribed in the 80286 Base Architecture section of
this Functional Description remain the same. Pro-
grams for the 8086, 88, 186, and real address mode
80286 can be run in protected mode; however, em-
bedded constants for segment selectors are differ-
ent.

Memory Size

The protected mode 80286 provides a 1 gigabyte
virtual address space per task mapped into a 16
megabyte physical address space defined by the ad-
dress pin Ap3_Ag and BHE. The virtual address
space may be larger than the physical address
space since any use of an address that does not
map to a physical memory location will cause a re-
startable exception.

Memory Addressing

As in real address mode, protected mode uses 32-
bit pointers, consisting of 16-bit selector and offset
components. The selector, however, specifies an in-
dex into a memory resident table rather than the up-
per 16-bits of a real memory address. The 24-bit

INTEL CORP (UP/PRPHLS)

intel.

base address of the desired segment is obtained
from the tables in memory. The 16-bit offset is add-
ed to the segment base address to form the physical
addrass as shown in Figure 10. The tables are auto-
matically referenced by the CPU whenever a seg-
ment register is loaded with a selector. All 80286
instructions which load a segment register will refer-
ence the memory based tables without additional
software. The memory based tables contain 8 byte
values called descriptors.

80286

DESCRIPTORS

Descriptors define the use of memory. Special types
of descriptors also define new functions for transfer
of control and task switching. The 80286 has seg-
ment descriptors for code, stack and data segments,
and system control descriptors for special system
data segments and control transfer operations. De-
scriptor accesses are performed as locked bus op-
erations to assure descriptor integrity in multi-proc-
essor systems.

wewony |} qpcumr

DESCRIPTOR
DESCRIFTOR TABLE

dA

L

v
2102583-10

32
149

CODE AND DATA SEGMENT DESCRIPTORS
s=1)

Besides segment base addresses, code and data
descriptors contain other segment attributes includ-
ing segment size (1 to 64K bytes), access rights
(read only, read/write, execute only, and execute/
read), and presence in memory (for virtual memory
systems) (See Figure 11). Any segment usage vio-
lating a segment attribute indicated by the segment
descriptor will prevent the memory cycle and cause
an exception or interrupt.

Code or Data Segment Descriptor

Figure 10. Protected Mode Memory Addressing

7 47 L]
B T
+7 INTEL RESEAVED" +6
ACCE!
momee ¢ [r{omcfs] e [o] msene oo
+3 BASEss o +2
A
+t LINNT s o []
1
" 87 1]
- 210253-11
*Must be set to 0 for compatibility with 80386. :

B?E D WM 482bL175 01l2L89kL 177 EMITLL

Access Rights Byte Definition
P osllt‘lo n Name Function
7 Present (P) P=1 Segment is mapped into physical memory.
P=0 No mapping to physical memory exits, base and limit are
not used.
8-5 Descriptor Privilege Segment privilege attribute used in privilege tests.
Level (DPL)
4 Segment Descrip- S=1 Gode or Data (includes stacks) segment descriptor
tor (S) §$=0 System Segment Descriptor or Gate Descriptor
3 Executable (E) E=0 Data segment descriptor type is: It
2 Expansion Direc- ED =0 Expand up segment, offsets must be < limit. Data
tion (ED) ED =1 Expand down segment, offsets must be > limit. Segment
1 ! Wiriteable (W) W =0 Data segment may not be written into. s=1,
T W=1 Data segment may be written into. E=0)
Fiyeplz 3 Executable (E) E=1 Code Segment Descriptor type is: If
Definition 2 Conforming (C) C=1 Code segment may anly be executed Code
when CPL = DPL and CPL Segment
remains unchanged.
1 Readabie (R) AR =0 Code segment may not be read S=1,
R=1 Code segment may be read. E=1)
0 Accessed (A) A=0 Segment has not been accessed.
A=1 Segment selector has been loaded into segment register
or used by selector test instructions.

Figure 11. Code and Data Segment Descriptor Formats

2-75

INTEL CORP (UP/PRPHLS)

80286

Code and data (including stack data) are stored in
two types of segments: code segments and data
segments. Both types are identified and defined by
segment descriptors (S = 1). Code segments are
identified by the executable (E) bit set to 1 in the
descriptor access rights byte. The access rights byte
of both code and data segment descriptor types

have three fields in common: present (P) bit, De- -

scriptor Privilege Level (DPL), and accessed (A) bit.
#f P = 0, any attempted use of this segment will
cause a not-present exception. DPL specifies the
privilege leve! of the segment descriptor. DPL con-
trols when the descriptor may be used by a task
(refer to privilege discussion below). The A bit shows
whether the segment has been previously accessed
for usage profiling, a necessity for virtual memory
systems. The CPU will always set this bit when ac-
cessing the descriptor.

Data segments (S = 1, E = 0) may be either read-
only or read-write as controlled by the W bit of the
access rights byte. Read-only (W = 0) data seg-
ments may not be written into. Data segments may
grow in two directions, as determined by the Expan-
sion Direction (ED) bit: upwards (ED = 0) for data
segments, and downwards (ED = 1) for a segment
containing a stack. The limit field for a data segment
descriptor is interpreted differently depending on the
ED bit (see Figure 11).

A code segment (S = 1, E = 1) may be execute-
only or execute/read as determined by the Read-
able (R) bit. Code segments may never be written
into and execute-only code segments (R = 0) may
not be read. A code segment may also have an attri-
bute called conforming (C). A conforming code seg-
ment may be shared by programs that execute at
different privilege levels. The DPL of a conforming
code segment defines the range of privilege levels
at which the segment may be executed (refer to priv-
ilege discussion below). The limit field identifies the
last byte of a code segment.

SYSTEM SEGMENT DESCRIPTORS (S = 0,
TYPE = 1=3)

In addition to code and data segment descriptors,
the protected mode 80286 defines System Sagment
Descriptors. These descriptors define special sys-
tem data segments which contain a table of descrip-
tors (Local Descriptor Table Descriptor) or segments
which contain the execution state of a task (Task
State Segment Descriptor).

Figure 12 gives the formats for the special system
data segment descriptors. The descriptors contain a
24-bit base address of the segment and a 16-bit lim-
it. The access byte defines the type of descriptor, its
state and privilege level. The descriptor contents are
valid and the segment is in physical memory if P =1,
If P = 0, the segment is not valid. The DPL field is
only used in Task State Segment descriptors and
indicates the privilege level at which the descrip-

2-78

intgl.

tor may be used (see Privilege). Since the Local De-
scriptor Table descriptor may only be used by a spe-
cial privileged instruction, the DPL field is not used.
Bit 4 of the access byte is 0 to indicate that it is a
system contral descriptor. The type fisld specifies
the descriptor type as indicated in Figure 12,

System Segment Descriptor

L4 .7 L

¥
*7 WTEL REBEAVED® +8
s
ol 03 O Il I
'S
*? BASE o *2
1
+1 L.'h..‘ [
[[.
210253-12

“Must be set to 0 for compatibility with 803886,

System Segment Descriptor Fields

Name | Value Description
TYPE 1 Available Task State Segment (TSS)
2 Local Descriptor Table
3 Busy Task State Segment (TSS)
P 0 Descriptor contents are not valid
1 Descriptor contents are valid
DPL 0-3 Descriptor Privilege Level
BASE | 24-bit | Base Address of special system data
number | segment in real memory
LIMIT | 16-bit | Offset of last byte in segment
number

Flgure 12. System Segment Descriptor Format

GATE DESCRIPTORS (S = 0, TYPE = 4-7)

Gates are used to control access to entry points
within the target code segment. The gate descrip-
tors are call gates, task gates, interrupt gates and
trap gates. Gates provide a level of indirection be-
tween the source and destination of the control
transfer. This indirection allows the CPU to automati-
cally perform protection checks and control entry
point of the destination. Call gates are used to
change privilege levels (see Privilege), task gates
are used to perform a task switch, and interrupt and
{rap gates are used to specify interrupt service rou-
tines. The interrupt gate disables interrupts (resets
IF) while the trap gate does not.

Gate Descriptor

7 7 o

T
+7 mll.lM' +9
WORD
i 'l","['l lwl"l [xlllx[countey | 4
+3 mmnoulsa.zcroa,... [l X| +2
1
-t DESTINATION OFFSEY (5o L
L
2. .? .
210253-13

*Must be set to 0 for compatibility with 80386 (X is don't care)

L7E D EE 4426175 0126397 003 EEITLI

INTEL CORP (UP/PRPHLS)

intgl.

Gate Descriptor Fields

Name Value Description
4 ~Call Gate
5 -Task Gate
TYPE 6 ~Interrupt Gate
7 —~Trap Gate
P 0 ~Descriptor Contents are not
valid
1 -Descriptor Contents are
valid
DPL 0-3 Descriptor Privilege Level
WORD Number of words to copy
COUNT 0-31 | fromcallers stack to called
procedures stack. Only used
with call gate.
Selectar to the target code
DESTINATION | 16-bit ?‘:g;“g:‘ e(’;:a"' Interrupt or
SELECTOR | selector Selector to the target task
state segment (Task Gate)
DESTINATION [16-bit | Entry point within the target

OFFSET offset | code segment

Figure 13. Gate Descriptor Format

Figure 13 shows the format of the gate descriptors.
The descriptor contains a destination pointer that
points to the descriptor of the target segment and
the entry point offset. The destination selector in an
interrupt gate, trap gate, and call gate must refer to a
code segment descriptor. These gate descriptors
contain the entry point to prevent a program from
constructing and using an illegal entry point. Task
gates may only refer to a task state segment. Since
task gates invoke a task switch, the destination off-
set is not used in the task gate.

Exception 13 is generated when the gate is used if a
destination selector does not refer to the correct de-
scriptor type. The word count field is used in the call
gate descriptor to indicate the number of parameters
(0-31 words) to be automatically copied from the
caller's stack to the stack of the called routine when
a control transfer changes privilege levels. The word

80286

scriptor privilege level and specifies when this de-
scriptor may be used by a task (refer to privilege
discussion below). Bit 4 must equal 0 to indicate a
system control descriptor. The type field specifies
the descriptor type as indicated in Figure 13.

SEGMENT DESCRIPTOR CACHE REGISTERS

A segment descriptor cache register is assigned to
each of the four segment registers (CS, SS, DS, ES).
Segment descriptors are automatically loaded
(cached) into a segment descriptor cache register
(Figure 14) whenever the associated segment regis-
ter is loaded with a selector. Only segment descrip-
tors may be loaded into segment descriptor cache
registers. Once loaded, all references to that seg-
ment of memory use the cached descriptor informa-
tion instead of reaccessing the descriptor. The de-
scriptor cache registers are not visible to programs.
No instructions exist to store their contents. They
only change when a segment register is loaded.

SELECTOR FIELDS

A protected mode selector has three fields: descrip-
tor entry index, local or global descriptor table indi-
cator (T1), and selector privilege (RPL) as shown in
Figure 15. These fields select one of two memory
based tables of descriptors, select the appropriate
table entry and allow highspeed testing of the selec-
tor's privilege attribute {refer to privilege discussion
below).

SELECTOR
Y I U W W I W T U . L
3 3370

aTs NAME FUNCTION

-0 REQUESTED | INDICATES SELECTOR PRIVILEGE
PRIVILEGE LEVEL DESIRED

T = 0 USE GLOBAL DESCRIPTOR TABLE

(Gon
T = 1USE LOCAL DESCRIPTOR TABLE
(]

LEVEL
(RPL)
TABLE
INDICATOR
™

INDEX

count field is not used by any other gate descriptor. 153 SELECT DESCRIFTOR ENTRY I\ TABLE
The access byte format is the same for all gate de- 21025315
scriptors. P = 1 indicates that the gate contents are Figure 15. Selector Fields
valid. P = 0 indicates the contents are not valid and
causes exception 11 if referenced. DPL is the de-
PROGRAM VISIBLE T T T T oomam s 1
! ACCESS [
SEGMENT SELECTORS : RIGHTS SEGMENT PHYSICAL BASE ADDRESS SEGMENT SIZ% :
cs 1 1
s | 1
' 1
ss] |
@ ! 1
1% : o “o» LR} :
SEGMENT REGISTERS] SEGMENT DESCRIPTOR CACHE REGISTERS 1
(LOADED BYPROGRAM) | (AITOMATICALLY LOADED 87 CP) Jd ov0255-14
Figure 14. Descriptor Cache Registers
2-77

L?E D WEM 4326175 012LASS TuT EEITLL

INTEL CORP (UP/PRPHLS)

80286

LOCAL AND GLOBAL DESCRIPTOR TABLES

Two tables of descriptors, called descriptor tables,
contain all descriptors accessible by a task at any
given time. A descriptor table is a linear array of up
to 8192 descriptors. The upper 13 bits of the selec-
tor value are an index into a descriptor table. Each
table has a 24-bit base register to locate the descrip-
tor table in physical memory and a 16-bit limit regis-
ter that confine descriptor access to the defined lim-
its of the table as shown in Figure 16. A restartable
exception (13) will occur if an attempt is made to
reference a descriptor outside the table limits.

One table, called the Global Descriptor table (GDT),
contains descriptors available to all tasks. The other
table, called the Local Descriptor Table (LDT), con-
tains descriptors that can be private to a task. Each
task may have its own private LDT. The GDT may
contain all descriptor types except interrupt and trap
descriptors. The LDT may contain only segment,
task gate, and call gate descriptors. A segment can-
not be accessed by a task if its segment descriptor
does not exist in either descriptor table at the time of
access.

~ MEMORY A,
cPy > 1
. Jr
1
GOT LIMIT 1 cor
3 }
GDT BASE)
24-BIT PHYS AD.]
15 0 J'
oisca | [wr,
CURRENT
Lot

_,
PR
!
a1
gl
Y
b
=1 K
HRR:
)
-d

I

210253-18

[
T
i
T
! LOT,
|
|
|
|
|

L
.

-
L
N, ~

Figure 16. Local and Global
Descriptor Table Definition

The LGDT and LLDT instructions load the base and
limit of the global and local descriptor tables. LGDT
and LLDT are privileged, i.e. they may only be exe-
cuted by trusted programs operating at level 0. The
LGDT instruction loads a six byte field containing the
18-bit table limit and 24-bit physical base address of
the Global Descriptor Table as shown in Figure 17.
The LLDT instruction loads a selector which refers
1o a Local Descriptor Table descriptor containing the

2-78

L7E D W 482bL17?5 012kA99 98 EEITLL

.

intel.
base address and limit for an LDT, as shown in Fig-
ure 12.

M *7 L

+5 | INTEL AESERVED® [BASEz.1¢ +4
+3 BASEss o +2
i
+1 LilT 19 9
1
L] .7 L]

210263-17

*Must be set to 0 for compatibility with 80388,

Figure 17. Global Descriptor Table and Interrupt
Descriptor Table Data Type

INTERRUPT DESCRIPTOR TABLE

The protected mode 80286 has a third descriptor
table, called the Interrupt Descriptor Table {IDT)
(see Figure 18), used to define up to 256 interrupts.
It may contain only task gates, interrupt gates and
trap gates. The IDT (Interrupt Descriptor Table) has
a 24-bit physical base and 16-bit limit register in the
CPU. The privileged LIDT instruction loads these
registers with a six byte value of identical form to
that of the LGDT instruction (see Figure 17 and Pro-
tected Mode Initialization).

A MEMORY
o o

GATE FOR
INTERRUPT #n

GATE FOR
INTERAUPT #n-1

. INTERAUPT

' DESCRIPTOR
cPy J . TABLE
(on
il ’ GATE FOR

INTERRUPT #1 % g

210253-18

GATE FOR
INTERRUPT #0

(49
)y

s
]

Figure 18. Interrupt Descriptor Table Definition

Refersnces to IDT entries are made via INT instruc-
tions, external interrupt vectors, or exceptions. The
IDT must be at least 256 bytes in size to allocate
space for all reserved interrupts.

Privilege

The 80286 has a four-level hierarchical privilege sys-
tem which controls the use of privileged instructions
and access to descriptors (and their associated seg-
ments) within a task. Four-level privilege, as shown
in Figure 19, is an extension of the user/supervisor
mode commonly found in minicomputers. The privi-
lege levels are numbered O through 3. Level 0 is the

INTEL CORP (UP/PRPHLS)

EMFORCEQD

WIGH SPEED
OPERATWNG
SYSTEM
INTERFACE

NOTE: AL BECOMES NUMERICALLY LOWER AS PRIVILEGE LEVEL
{NCREASES

210253-19

Figure 19. Four-Level Privilege

most privileged level. Privilege levels provide protec-
tion within a task. (Tasks are isolated by providing
private LDT’s for each task.) Operating system rou-
tines, interrupt handlers, and other system software
can be included and protected within the virtual ad-
dress space of each task using the four levels of
privilege. Each task in the system has a separate
stack for sach of its privilege leveis.

Tasks, descriptors, and selectors have a privilege
level attribute that determines whether the descrip-
tor may be used. Task privilege effects the use of
instructions and descriptors. Descriptor and selector
privilege only effect access to the descriptor.

TASK PRIVILEGE

A task always executes at one of the four privilege
lavels. The task privilege level at any specific instant
is called the Current Privilege Level (CPL) and is de-
fined by the lower two bits of the CS register. CPL
cannot change during execution in a single code
segment. A task’s CPL may only be changed by con-
trol transfers through gate descriptors to a new code
segment (See Control Transfer). Tasks begin exe-
cuting at the CPL value specified by the code seg-
ment selector within TSS when the task is initiated
via a task switch operation (See Figure 20). A task
executing at Level 0 can access all data segments
defined in the GDT and the task’'s LDT and is con-
sidered the most trusted level. A task executing a
Level 3 has the most restricted access to data and is
considered the least trusted level.

DESCRIPTOR PRIVILEGE

Descriptor privilege is specified by the Descriptor
Privilege Levsl (DPL) field of the descriptor access
byte. DPL specifies the least trusted task privilege

80286

level (CPL) at which a task may access the descrip-
tor. Descriptors with DPL = 0 are the most protect-
ed. Only tasks executing at privilege level 0
(CPL = 0) may access them. Descriptors with DPL
= 3 are the least protected (i.e. have the least re-
stricted access) since tasks can access them when
CPL = 0, 1, 2, or 3. This rule applies to all descrip-
tors, except LDT descriptors.

‘SELECTOR PRIVILEGE

Selector privilege is specified by the Requested Priv-
ilege Level (RPL) field in the least significant two bits
of a selector. Selector RPL may establish a less
trusted privilege level than the current privilege level
for the use of a selector. This level is called the
task’s effective privilege level (EPL). RPL can only
reduce the scope of a task’s access to data with this
selector. A task’s effective privilege is the numeric
maximum of RPL and CPL. A selector with RPL = 0
imposes no additional restriction on its use while a
selector with RPL = 3 can only refer to segments at
privilege Level 3 regardless of the task's CPL. RPL
is generally used to verify that pointer parameters
passed to a more trusted procedure are not allowed
to use data at a more privileged level than the caller
(refer to pointer testing instructions). 1

Descriptor Access and Privilege
Validation

Determining the ability of a task to access a seg-
ment involves the type of segment to be accessed,
the instruction used, the type of descriptor used and
CPL, RPL, and DPL. The two basic types of segment
accesses are control transfer (selectors loaded into
CS) and data (selectors loaded into DS, ES or SS).

DATA SEGMENT ACCESS

Instructions that load selectors into DS and ES must
refer to a data segment descriptor or readable code
segment descriptor. The CPL of the task and the
RPL of the selector must be the same as or more
privileged (numerically equal to or lower than) than
the descriptor DPL. in general, a task can only ac-
cess data segments at the same or less privileged
levels than the CPL or RPL (whichever is numerically
higher) to prevent a program from accessing data it
cannot be trusted to use.

An exception to the rule is a readable conforming
code segment. This type of code segment can be
read from any privilege level.

if the privilege checks fail (e.g. DPL is numerically
less than the maximum of GPL and RPL) or an incor-
rect type of descriptor is referenced (e.g. gate de-

2-79

LE7E D EE ud2bl7?5 0126900 423 MEITLL

INTEL

80286

scriptor or execute only code segment) exception 13
occurs. If the segment is not present, exception 11
is generated.

Instructions that load selectors into SS must refer to
data segment descriptors for writable data seg-
ments. The descriptor privilege (DPL) and RPL must
equal CPL. All other descriptor types or a privilege
level violation will cause exception 13. A not present
fault causes exception 12.

CONTROL TRANSFER

Four types of control transter can occur when a se-
lector is loaded into CS by a control transfer opera-
tion (see Table 10). Each transfer type can only oc-
cur if the operation which loaded the selector refer-
ences the correct descriptor type. Any violation of
these descriptor usage rules (e.g. JMP through a call
gate or RET to a Task State Segment) will cause
exception 13.

The ability to reference a descriptor for control trans-
fer is also subject to rules of privilege. A CALL or
JUMP instruction may only reference a code seg-
ment descriptor with DPL equal to the task CPL or a
conforming segment with DPL of equal or greater
privilege than CPL. The RPL of the selector used to
reference the code descriptor must have as much
privilege as CPL.

RET and IRET instructions may only reference code
segment descriptors with descriptor privilege equal
to or less priviteged than the task CPL. The selector
loaded into CS is the return address from the stack.
After the return, the selector RPL is the task’s new
CPL. If CPL changes, the old stack pointer is popped
after the return address.

When a JMP or CALL references a Task State Seg-
ment descriptor, the descriptor DPL must be the
same or less privileged than the task's CPL. Refer-

CORP (UP/PRPHLS)

L]

intel.
ence to a valid Task State Segment descriptor caus-
es a task switch (see Task Switch Operation). Refer-
ence to a Task State Segment descriptor at a more

privileged level than the task’s CPL generates ex-
ception 13.

When an instruction or interrupt references a gate
descriptor, the gate DPL must have the same or less
privilege than the task CPL. if DPL is at a more privi-
leged level than CPL, exeception 13 occurs. If the
destination selector contained in the gate refer-
ences a code segment descriptor, the code seg-
ment descriptor DPL must be the same or more priv-
ileged than the task CPL. if not, Exception 13 is is-
sued. After the control transfer, the code segment
descriptors DPL is the task’s new CPL. If the desti-
nation selector in the gate references a task state
segment, a task switch is automatically performed
(see Task Switch Operation).

The privilege rules on control transfer require:

— JMP or CALL direct to a code segment (code
segment descriptor) can only be to a conforming
segment with DPL of equal or greater privilege
than CPL or a non-conforming segment at the
same privilege level.

— interrupts within the task or calls that may
change privilege levels, can only transfer control
through a gate at the same or a less privileged
level than CPL to a code segment at the same or
more privileged level than CPL.

— return instructions that don't switch tasks can
only return control to a code segment at the
same or less privileged level.

— task switch can be performed by a call, jump or
interrupt which references either a task gate or
task state segment at the same or less privileged
level.

Table 10. Descriptor Types Used for Control Transfer

Control Transfer Types Operation Types &ﬁ:ﬁ;ﬁ; Do;::;tor
Intersegment within the same privilege level JMP, CALL, RET, IRET* | Code Segment | GDT/LDT
Intersegment to the same or higher privilege level Interrupt | CALL Call Gate GDT/LDT
within task may change CPL. Interrupt Instruction, Trap or DT
Exception, External interrupt
interrupt Gate
Intersegment to a lower privilege level (changes task CPL) RET, IRET* Code Segment | GDT/LDT
CALL, JMP Task State GOT
Segment
Task Switch CALL, JMP Task Gate GDT/LDT
IRET**
Interrupt Instruction,
Exception, External Task Gate 10T
Interrupt

*NT {Nested Task bit of flag word) = 0
**NT (Nested Task bit of flag word) = 1

2-80

L?E D BN 482b175 0126901 3b4 EEITLIL

INTEL CORP (UP/PRPHLS)

intgl.

PRIVILEGE LEVEL CHANGES

Any control transfer that changes CPL within the
task, causes a change of stacks as part of the oper-
ation. Initial values of SS:SP for privilege levels 0, 1,
and 2 are kept in the task state segment (refer to
Task Switch Operation). During a JMP or CALL con-
trol transfer, the new stack pointer is loaded into the
SS and SP registers and the previous stack pointer
is pushed onto the new stack.

When returning to the original privilege level, its
stack is restored as part of the RET or IRET instruc-
tion operation. For subroutine calls that pass param-
eters on the stack and cross privilege levels, a fixed
number of words, as specified in the gate, are cop-
ied from the previous stack to the current stack. The
inter-segment RET instruction with a stack adjust-
ment value will correctly restore the previous stack
pointer upon return.

Protection ‘

The 80286 includes mechanisms to protect critical
instructions that affect the CPU execution state (e.g.
HLT) and code or data segments from improper us-
age. These protection mechanisms are grouped into
three forms:

, Restricted usage of sagments (e.g. no write al-
lowed to read-only data segments). The only seg-
ments available for use are defined by descrip-
tors in the Local Descriptor Table (LDT) and
Global Descriptor Table (GDT).

Restricted access to segments via the rules of
privilege and descriptor usage.

Privileged instructions or operations that may
only be executed at certain privilege levels as de-
termined by the CPL and 1/O Privilege Level
(IOPL). The IOPL is defined by bits 14 and 13 of
the flag word.

These checks are performed for all instructions and
can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception related to the stack
segment causes exception 12.

The IRET and POPF instructions do not perform
some of their defined functions if CPL is not of suffi-
cient privilege (numerically small enough). Precisely
these are:

e The IF bit is not changed if CPL > IOPL.
¢ The IOPL field of the flag word is not changed if
CPL > 0.

No exceptions or other indication are given when
these conditions occur.

80286
Table 11
Segment Register Load Checks
Exception
Error Description Number
Descriptor table limit exceeded 13
Segment descriptor not-present 110r12
Privilege rules violated 13
Invalid descriptor/segment type seg-
ment register load:
—~Read only data segment load to
SS
—Special Control descriptor load to
0S8, ES, S8 13
—Execute only segment load to
0S,ES, SS
—Data segment load to CS
—Read/Execute code segment
load to SS

Table 12. Operand Reference Checks

) Exception
Error Description Number
Write into code segment 13
Read from execute-only code
segment 13
Write to read-only data segment 13
Segment iimit exceeded! 120r 13

NOTE:
Carry out in offset calculations is ignored.

Table 13. Privileged Instruction Checks

Exception
Error Description Number
CPL # 0 when executing the following
instructions: 13
LIDT, LLOT, LGDT, LTR, LMSW,
CTS, HLT
CPL > IOPL when executing the fol-
lowing instructions: 13
INS, IN, OUTS, OUT, STi, CLI,
LOCK
EXCEPTIONS

The 80286 detects several types of exceptions and
interrupts, in protected mode (see Table 14). Most
are restartable after the exceptional condition is re-
moved. Interrupt handiers for most exceptions can
read an arror code, pushed on the stack after the
return address, that identifies the selector involved
(0 if none). The return address normally points to the
failing instruction, including all leading prefixss. For a
processor extension segment overrun exception,
the return address will not point at the ESC instruc-
tion that caused the exception; however, the proces-
sor extension registers may contain the address of
the failing instruction.

2-81

L?E D EB 4826175 0126902 270 ERITLL

INTEL CORP (UP/PRPHLS)

N]
80286 Intel
®
Table 14. Protected Mode Exceptions
i Return
Always Error
Interrupt Function Address Restart- Code
Vector At Falling able? on Stack?
Instruction?
8 Double exception detected Yes) No2 Yes
9 Processor extension segment overrun No No2 No
10 invalid task state segment Yes Yes Yes
11 Segment not present) Yes Yes Yes
12 Stack segment overrun or stack segment not present Yes Yes! Yes
13 General protection Yes No2 Yes
NOTE:

1. When a PUSHA or POPA instruction attempts to wrap around the stack segment, the machine state after the exception
will not be restartabie because stack segment wrap around is not permitted. This condition is identified by the value of the

saved SP being either 0000(H), 0001(H), FFFE(H), or FFFF(H).

2. These exceptions indicate a violation to privilege rules or usage rules has occurred. Restart is generally not attempted

under those conditions.

These exceptions indicate a violation to privilege
rules or usage rules has occurred. Restart is gener-
ally not attempted under those conditions.

All these checks are performed for all instructions
and can be split into three categories: segment load
checks (Table 11), operand reference checks (Table
12), and privileged instruction checks (Table 13).
Any violation of the rules shown will result in an ex-
ception. A not-present exception causes exception
11 or 12 and is restartable.

Special Operations

TASK SWITCH OPERATION

The 80286 provides a built-in task switch operation
which saves the entire 80286 execution state (regis-
ters, address space, and a link to the previous task),
loads a new execution state, and commences exe-
cution in the new task. Like gates, the task switch
operation is invoked by executing an inter-segment
JMP or CALL instruction which refers to a Task
State Segment (TSS) or task gate descriptor in the
GDT or LDT. An INT n instruction, exception, or ex-
© ternal interrupt may also invoke the task switch op-
eration by selacting a task gate descriptor in the as-
sociated IDT descriptor entry.

The TSS descriptor points at a segment (see Figure
20) containing the entire 80286 execution state
while a task gate descriptor contains a TSS selector.
The limit field of the descriptor must be >002B(H).

Each task must have a TSS associated with it. The
current TSS is identified by a special register in the
80286 called the Task Register (TR). This register
contains a selector referring to the task state seg-
ment descriptor that defines the current TSS. A hid-
den base and limit register associated with TR are
loaded whenever TR is loaded with a new selector.

2-82

The IRET instruction is used to return control to the
task that called the current task or was interrupted.
Bit 14 in the flag register is called the Nested Task
(NT) bit. It controls the function of the IRET instruc-
tion. If NT = 0, the IRET instruction performs the
regular current task by popping values off the stack;
when NT = 1, IRET performs a task switch opera-
tion back to the previous task.

When a CALL, JMP, or INT instruction initiates a
task switch, the old (except for case of JMP) and
new TSS will be marked busy and the back link field
of the new TSS set to the old TSS selactor. The NT
bit of the new task is set by CALL or INT initiated
task switches. An interrupt that does not cause a
task switch will clear NT. NT may also be set or
cleared by POPF or IRET instructions.

The task state segment is marked busy by changing
the descriptor type field from Type 1 to Type 3. Use
of a selector that references a busy task stats seg-
ment causes Exception 13.

PROCESSOR EXTENSION CONTEXT
SWITCHING

The context of a processor extension (such as the
80287 numerics processor) is not changed by the
task switch operation. A processor extension con-
text need only be changed when a different task at-
tempts to use the processor extension (which still
contains the context of a previous task). The 80286
detects the first use of a processor extension after a
task switch by causing the processor extension not
present exception (7). The interrupt handier may
then decide whether a context changs is necessary.

Whenever the 80286 switches tasks, it sets the Task
Switched (TS) bit of the MSW. TS indicates that a
processor extension context may belong to a differ-
ent task than the current one. The processor exten-
sion not present exception (7) will occur when at-
tempting to execute an ESC or WAIT instruction if
TS=1 and a processor extension is present (MP =1

in MSW).

G7E D EH 48¢2L175 012L903 137 -ITLl

INTEL CORP (UP/PRPHLS) L?E D EE 4826175 0126904 07?3 EEITLL

i ntel ® | : | 80286

POINTER TESTING INSTRUCTIONS tions use the memory management hardware to ver-
ify that a selector value refers to an appropriate seg-

The 80286 provides several instructions to speed ment without risking an exception. A condition flag

pointer testing and consistency checks for maintain- (ZF) indicates whether use of the selector or seg-
ing system integrity (see Table 15). These instruc- ment will cause an exception.
~ :;
cm
INTEL AS‘SERVED e bE:
TASK REGISTER D .
fe— r(eto BASEZ-1 ' AN AVAILABLE TASK STATE
™ —— e b g SEGMENT LAl SEGMENT. MAY BE USED AS
ESCRPTOR TME DESTINATION OF A TASK
.‘____u___l___1 SASEg o b SWITCH OPERATION.
1
| ppoaraMmvisieLe | : 3 A BUSY YASK STATE SEGMENT.
| »- .) LTy CANNOT BE USED AS THE
\ i ' 1 DESTINATION OF A TASK
LT] BSWITCH.
1 () S g
1 [R ettty
[Enes l . 4
() . i L ; ~
[N S F] SYTE
15 0] OFFsET
[| Tasx L ovseiecton 2
08 SELECTOR o
$8 SELECTOR »
SEGMENT IS NOT PRESENT 1%
C$ SELECTOR » MEMORY, BASE AND LIMIT ARE NOT
ES SELECTOR M . :
o 1
E »
R [T3 2| curReny
} TASK
»r %[STATR
[“
TASK ox 2
e STATE
SEGMENT cX E
AX w
FLAG WORD 1]
W (ENTRY POINT) 14)
SSFORCPL2 12
SPFORCPL2 10
SSFORCPL 1 8| WNTAL
STACKS
SPFORCPL 8] FORCPLOL2
SSFORCPLO 4
SPFORCPLO 2
’
BACK LINK SELECTOR TO 18§ 9
E A =
210253-20

Figure 20. Task State Segment and TSS Registers

I 2-83

INTEL CORP (UP/PRPHLS)

!

80286

Table 15. 80286 Pointer Test instructions

Instruction | Operands Function

ARPL Selector,

Register

Adjust Requested Privilage
Level: adjusts the RPL of
the selector to the numeric
maximum of current selec-
tor RPL value and the RPL
value in the register. Set
zoro flag if selector RPL
was changed by ARPL.

VERR Selector | VERIify for Read: sets the
zero flag if the segment re-
ferred to by the selector

can be read.

VERW Selsctor VERIify for Write: sets the
2oro flag if the segment re-
ferred to by the selector

can be written.

LSL Register,
Selector

Load Segment Limit: reads
the segment limit into the
register if privilege rules
and descriptor type allow.
Set zero flag if succassful.

LAR Register, Load Access Rights: reads
Selector the descriptor access
rights byte into the register
if privilege rules allow. Set
zero flag if successful.

DOUBLE FAULT AND SHUTDOWN

If two separate exceptions are detected during a sin-
gle instruction execution, the 80286 performs the
double fault exception (8). If an execution occurs
during processing of the double fault exception, the
80286 will enter shutdown. During shutdown no fur-
ther instructions or exceptions are processed. Either
NM! (CPU remains in protected moda) or RESET
(CPU exits protected mode) can force the 80286 out
of shutdown. Shutdown is externally signalled via a
HALT bus operation with A; LOW.

PROTECTED MODE INITIALIZATION

The 80286 initially executes in real address mode
after RESET. To allow initialization code to be
placed at the top of physical memory, Agz—Apg will
be HIGH when the B0286 performs memory refer-
ences relative to the CS register until CS is changed.
Aps-Agg will be zero for references to the DS, ES, or
SS segments. Changing CS in real address mode
will force Axg-Aog LOW whenever CS is used again.
The initial CS:IP value of FODO:FFFO provides 64K
bytes of code space for initialization code without
changing CS.

Protected mode operation requires several registers
to be initialized. The GDT and IDT base registers
must refer to a valid GDT and IDT. After executing
the LMSW instruction to set PE, the 80286 must im-

2-84

G7E P HEE 4826175 012L905 TOT EMITLL

a
intgl.
mediately execute an intra-segment JMP instruction

to clear the instruction queue of instructions decod-
ed in real address mode.

To force the 80286 CPU registers to match the initial
protected mods state assumed by software, execute
a JMP instruction with a selector referring to the ini-
tial TSS used in the system. This will load the task
register, local descriptor table register, segment reg-
isters and initial general register state. The TR
should point at a vatid TSS since any task switch
operation involves saving the current task state.

SYSTEM INTERFACE

The 80286 system interface appears in two forms: a
local bus and a system bus. The local bus consists
of address, data, status, and control signals at the -
pins of the CPU. A system bus is any buffered ver-
sion of the local bus. A system bus may also differ
from the local bus in terms of coding of status and
control lines and/or timing and loading of signals.
The 80286 family includes several devices to gener-
ate standard system buses such as the !EEE 796
standard MULTIBUS.

Bus Interface Signals and Timing

The 80286 microsystem local bus interfaces the
80286 to local memory and I/0 components. The
interface has 24 address lines, 16 data lines, and 8
status and control signals.

The 80286 CPU, 82C284 clock generator, 82C288
bus controller, tranceivers, and latches provide a
buffered and decoded system bus interface. The
82C284 generates the system clock and synchroniz-
es READY and RESET. The 82C288 converts bus
operation status encoded by the 80286 into com-
mand and bus control signals. These components
can provide the timing and electrical power drive lev-
ols required for most system bus interfaces including
the Multibus.

Physical Memory and I/0 Interface

A maximum of 16 megabytes of physical memory
can be addressed in protected mode. One mega-
byte can be addressed in real address mode. Memo-
ry is accessible as bytes or words. Words consist of
any two consecutive bytes addressed with the least
significant byte stored in the lowest address.

Byte transfers occur on sither half of the 16-bit local
data bus. Even bytes are accessed over Dy_g while
odd bytes are transferred over Dy5_g. Even-ad-
dressed words are transferred over Dis.g in one
bus cycle, while odd-addressed word require two
bus operations. The first transfers data on Dys5_g,
and the second transfers data on D7.g. Both byte
data transfers occur automatically, transparent to
software.

INTEL CORP (UP/PRPHLS)

intgl.

Two bus signals, Ag and BHE, control transfers over
the lower and upper halves of the data bus. Even
address byte transfers are indicated by Ag LOW and
BHE HIGH. Odd address byte transfers are indicat-
ed by Ag HIGH and BHE LOW. Both Ag and BHE are
LOW for even address word transfers.

The 1/0 address space contains 64K addresses in
both modes. The 1/0 space is accessible as either
bytes or words, as is memory. Byte wide peripheral
devices may be attached to either the upper or lower
byte of the data bus. Byte-wide I/0 devices attached
to the upper data byte (Dy5.g) are accessed with
odd 1/0 addresses. Devices on the lowser data byte
are accessed with even 1/0 addresses. An interrupt
controller such as Intel's 8259A must be connected
to the lower data byte {D7..g) for proper return of the
interrupt vector.

Bus Operation

The 80286 uses a double frequency system clock
(CLK input) to control bus timing. All signais on the
local bus are measured relative to the system CLK
input. The CPU divides the system clock by 2 to pro-
duce the internal processor clock, which determines
bus state. Each processor clock is composed of two
system clock cycles named phase 1 and phase 2.
The 82C284 clock generator output (PCLK) identi-
fies the next phase of the processor clock. (See Fig-
ure 21.)

[e-———— ONE PROCESSOR CLOCK i&:]
[t—————— ONE BUS T STATE
PHASE 1 PHASE 2
e OF PROCESSOR. OF PROCESSOR ——a
CLOCK CYCLE CLOCK CYCLE
[V 3
et ONE SYSTEM
CLX CYCLE
e N

210253-21

Figure 21. System and Processor
Clock Relationships

Six types of bus operations are supported; memory
read, memory write, 1/0 read, I/0 write, interrupt ac-
knowledge, and halt/shutdown. Data can be trans-
ferred at a maximum rate of one word per two proc-
essor clock cycles.

The 80286 bus has three basic states: idle (T;), send
status (Tg), and perform command (T¢). The 80286
CPU also has a fourth local bus state called hold
(Tr). Th indicates that the 80286 has surrendered
control of the local bus to another bus master in
response to a HOLD request.

Each bus state is one processor clock long. Figure
22 shows the four 80286 local bus states and al-
lowed transitions.

B?E D WM 482bLl7?5 012690L 4L EEITLY

80286

(®

* NEW CYCLE

210253-22

Figure 22. 80286 Bus States

Bus States

The idle (T;) state indicates that no data transfers
are in progress or requested. The first active state
Ts is signaled by status line ST or 80 going LOW
and identifying phase 1 of the processor clock. Dur-
ing Ts, the command encoding, the address, and
data (for a write operation) are available on the
80286 output pins. The 82C288 bus controller de-
codes the status signals and generates Multibus
compatible read/write command and local trans-
ceiver control signals.

After Ts, the perform command (T¢) state is en-
tered. Memory or 1/0 devices respond to the bus
operation during T, either transferring read data to
the CPU or accepting write data. T¢ states may be
repeated as often as necessary to assure sufficient
time for the memory or I/0O device to respond. The
READY signal determines whether Tg is repeated. A
repeated T state is called a wait state.)

During hold (Tph), the 80286 will float all address,
data, and status output pins enabling another bus
master to use the local bus. The 80286 HOLD input
signal is used to place the 80286 into the T, state.
The 80286 HLDA output signal indicates that the
CPU has entered T,

Pipelined Addressing

The 80286 uses a local bus interface with pipelined
timing to allow as much time as possible for data
access. Pipelined timing allows a new bus operation
to be initiated every two processor cycles, while al-
lowing each individual bus operation to last for three
processor cycles.

The timing of the address outputs is pipslined such
that the address of the next bus operation becomes
available during the current bus operation. Or in oth-
er words, the first clock of the next bus operation is
overlapped with the last clock of the current bus op-
eration. Therefore, address decode and routing logic
can operate in advance of the next bus operation.

2-85

INTEL CORP (UP/PRPHLS)

G?E D EN 442b175 0126907 4482 EMMITLY

=
80286 "‘]tel®
READ 8US CYCLEN READBUSCYCLEN + 1 — il
" P g D g RSP iy AT
M
snoC CLx] LT l 1 [7
|<—zmcvu.:mmT—— :mmlzmm >
-i 2.8 CLOCK CYCLE ADORESS TO DATA VALID
An - XK vauo acon 9| XL [wwosooronen [XK
20 » 31 —L K»/ '3‘—\ \\/
READY S \ ,
R Cmmmmmmmm e >
YALID READ VALID READ
DATA (N} DATA (N + 1)
PWPELINING: VALID ADORESS (N ~ 1) AMAILABLE IN LAST PHASE OF BUS CYCLE (N).
210253-23

Figure 23. Basic Bus Cycle

External address latches may hold the address sta-
ble for the entire bus operation, and provide addi-
tional AC and DC buffering.

The 80286 does not maintain the address of the cur-
rent bus operation during all T states. Instead, the
address for the next bus operation may be emitted
during phase 2 of any T.. The address remains valid
during phase 1 of the first T to guarantee hoid time,
relative to ALE, for the address latch inputs.

Bus Control Signals

The 82C288 bus controller provides control signals;
address latch enable (ALE), Read/Write commands,
data transmit/receive (DT/R), and data enable
(DEN) that control the address latches, data trans-
ceivers, write enable, and output enable for memory
and /0 systems.

The Address Latch Enable (ALE) output determines
when the address may be latched. ALE provides at
least one system CLK period of address hold time
from the end of the previous bus operation until the
address for the next bus operation appears at the
latch outputs. This address hold time is required to
support MULTIBUS and common memory systems.

The data bus transceivers are controlled by 82C288
outputs Data Enable (DEN) and Data Transmit/Re-
ceive (DT/R). DEN enables the data transceivers;
while DT/R controls tranceiver direction. DEN and
DT/R are timed to prevent bus contention between
the bus master, data bus transceivers, and system
data bus transceivers.

2-86

Command Timing Controls

Two system timing customization options, command
extension and command delay, are provided on the
80286 local bus.

Command extension allows additional time for exter-
nal devices to respond to a command and is analo-
gous to inserting wait states on the 8086. External
logic can control the duration of any bus operation
such that the operation is only as long as necessary.
The READY input signal can extend any bus opera-
tion for as long as necessary.

Command delay allows an increase of address or
write data setup time to system bus command active
for any bus operation by delaying when the system
bus command becomes active. Command delay is
controlled by the 82C288 CMDLY input. After T,
the bus controller samples CMDLY at sach failing
edge of CLK. If CMDLY is HIGH, the 82C288 will not
activate the command signal. When CMDLY is LOW,
the 82C288 will activate the command signal. After
the command becomes active, the CMDLY input is
not sampled.

When a command is delayed, the available re-
sponse time from command active to return read
data or accept write data is less. To customize sys-
tem bus timing, an address decoder can determine
which bus operations require delaying the com-
mand. The CMDLY in, ﬁput does not affect the timing
of ALE, DEN, or DT/

INTEL CORP .(UP/PRPHLS)

L?E D HEE 4826175 0l2kY908 719 EEMITLL

80286

READ BUS CYCLEN ————————
i

mm(w 7)({(((/ XX wwlboonn 77 7WTX
- J@é/
N
Py
R A ——

210253-24

Figure 24. CMDLY Controls the Leading Edge of Command Signal

Figure 24 illustrates four uses of CMDLY. Example 1
shows delaying the read command two system
CLKs for cycle N-1 and no delay for cycle N, and
example 2 shows delaying the read command one
system CLK for cycle N-1 and one system CLK de-
lay for cycle N.

Bus Cycle Termination '

At maximum transfer rates, the 802686 bus alternates
between the status and command states. The bus
status signals become inactive after Tg so that they
may correctly signal the start of the next bus opera-
tion after the completion of the current cycle. No
external indication of T, exists on the 80286 local

bus. The bus master and bus controtler enter T di-’

rectly after Tg and continue executing T cycles until
terminated by READY.

READY Operation

The current bus master and 82C288 bus controller
terminate each bus operation simultaneously to
achieve maximum bus operation bandwidth. Both
are informed in advance by READY active (open-
collector output: from 82C284) which identifies the
last T¢ cycle of the current bus operation. The bus
master and bus controller must see the same sense

of the READY signal, thereby requiring READY be

“synchronous to the system clock.

Synchronous Ready

The 82C284 clock generator provides READY syn-
chronization from both synchronous and asynchro-
nous sources (see Figure 25). The synchronous
ready input (SRDY) of the clock generator is sam-
pled with the falling edge of CLK at the end of phase
1 of each T. The state of SRDY is then broadcast to
the bus master and bus controller via the READY
output line.

Asynchronous Ready

Many systems have devices or subsystems that are
asynchronous to the system clock. As a result, their
ready outputs cannot be guaranteed to mest the
82C284 SRDY setup and hold time requirements.
But the 82C284 asynchronous ready input (ARDY) is
designed to accept such signals. The ARDY input is
sampled at the beginning of each T cycle by
82C284 synchronization logic. This provides one
system CLK cycle time to resolve its value before
broadcasting it to the bus master and bus controller.

2-87

INTEL CORP (UP/PRPHLS)

b7E D EE 4826175 0126909 b55 EEITLL

80286 intelw
i S S e LY
PROC CLK l I I AJ Iﬁi l————-—-J
Aa - 2 VAL 4DOR [XKL w0 aoom XXX

o7 TGN 777777077 | NN AWA Y

/

Lo (SEENOTE 1)

NOTES:
1. SROYEN is active low.

3. ARDYEN is active low.

S
oy N\A//HIHITHITT,

ALTARANARULURULRALVATRUERR VRV ARV AR AR R

2. it SRDYEN is high, the state of SRDY will no affect READY.

{SEENOTEZ)

(SEENOTE D)
210253-25

Figure 25. Synchronous and Asynchronous Ready

ARDY or ARDYEN must be HIGH at the end of Ts.
ARDY cannot be used to terminate bus cycle with no
wait states.

Each ready input of the 82C284 has an enable pin
(SRDYEN and ARDYEN) to select whether the cur-
rent bus operation will be terminated by the synchro-
nous or asynchronous ready. Either of the ready in-
puts may terminate a bus operation. These enable
inputs are active low and have the same timing as
their respective ready inputs. Address decode logic
usually selects whether the current bus operation
should be terminated by ARDY or SRDY.

Data Bus Control

Figures 26, 27, and 28 show how the DT/R, DEN,
data bus, and address signals operate for different
combinations of read, write, and idle bus operations.
DT/R goes active (LOW) for a read operation. DT/R
remains HIGH before, during, and between write op-
erations.

2-88

The data bus is driven with write data during the
second phase of Tg. The delay in write data timing
allows the read data drivers, from a previous read
cycle, sufficient time to enter 3-state OFF before the
80286 CPU begins driving the local data bus for
write operations. Write data will always remain valid
tor one system clock past the last T to provide suffi-
cient hold time for Muitibus or other similar memory
or |1/0 systems. During write-read or write-idle se-
quences the data bus enters 3-state OFF during the
second phase of the processor cycle after the last
Te. In a write-write sequence the data bus does not
enter 3-state OFF between T and Tg.

Bus Usage

The 80286 local bus may be used for several func-
tions: instruction data transfers, data transfers by
other bus masters, instruction fetching, processor
extension data transfers, interrupt acknowledge, and
halt/shutdown. This section describes local bus ac-
tivities which have special signals or requirements.

INTEL CORP (UP/PRPHLS) L7E D EB 4826175 0126910 377 EEITLYL

tel 80286
®

210253-26

Figure 26. Back to Back Read-Write Cycles

WWNITE CYCLE READ CYCLE
—T;—+———T.———-|-¢———1c Ys—————'q——k——-b’o—ﬁ*—’i
[}] » ! - L] [}] o + - Ll] - o] -

A]««« T T AT)
- /

—

210253-27

Figure 27. Back to Back Write-Read Cycles

2-89

INTEL CORP (UP/PRPHLS)

L?E D W 4426175 0126911 203 ENITLL

n
80286)
intel.
WRITE CYCLE N1 WRITE CYCLE N
*—Td4ﬁf?7“hﬂ?fr+i*TTﬂ*TTT*PTﬂfTﬂ
cik
rorte DX womoin]
30 & 8t
DisBg = m e e m — —— — (/" VAUDDATAN-t VAUID OATA N I # =~
WWTC
OEN \A
VOH
oTA
21025328
Figure 28. Back to Back Write-Write Cycles
HOLD and HLDA cycles other than Interrupt-Acknowledge cycles,

HOLD AND HLDA allow another bus master to gain
control of the local bus by placing the 80286 bus into
the Ty state. The sequence of events required to
pass control between the 80286 and another local
bus master are shown in Figurs 29.

In this example, the 80286 is initially in the Ty, state
as signaled by HLDA being active. Upon leaving T,
as signaled by HLDA going inactive, a write opera-
tion is started. During the write operation another
local bus master requests the local bus from the
80286 as shown by the HOLD signal. After complet-
ing the write operation, the 80286 performs one T;
bus cycle, to guarantee write data hold time, then
entors Ty, as signaled by HLDA going active.

The CMDLY signal and ARDY ready are used to
start and stop the write bus command, respectively.
Noteg that SRDY must be inactive or disabled by
SROYEN to guarantee ARDY will terminate the cy-
cle.

HOLD must not be active during the time from the
leading edge of RESET until 34 CLKs following the
trailing edge of RESET.

Lock

The CPU asserts an active lock signal during Inter-
rupt-Acknowledge cycles, the XCHG instruction, and
during some descriptor accesses. Lock is also as-
serted when the LOCK prefix is used. The LOCK
prefix may be used with the following ASM-286 as-
sembly instructions; MOVS, INS, and OUTS. For bus

2-90

Lock will be active for the first and subsequent cy-
cles of a series of cycles to be locked. Lock will not
be shown active during the last cycle to be locked.
For the next-to-last cycle, Lock will become inactive
at the end of the first T, regardless of the number of
wait-states inserted. For Interrupt-Acknowledge cy-
cles, Lock will be active for each cycle, and will be-
come inactive at the end of the first T for each cy-
cle regardless of the number of wait-states inserted.

Instruction Fetching

The 80286 Bus Unit (BU) will fetch instructions
ahead of the current instruction being executed. This
activity is called prefetching. it occurs when the local
bus would otherwise be idle and obeys the following
rules:

A prefetch bus operation starts when at least two
bytes of the 6-byte prefetch queue are empty.

The prefetcher normally performs word prefetches
independent of the byte alignment of the code seg-
ment base in physical memory.

The prefetcher will perform only a byte code fetch
operation for control transfers to an instruction be-
ginning on a numerically odd physical address.

Prefetching stops whenever a control transfer or
HLT instruction is decoded by the IU and placed into
the instruction queus.

In real address mode, the prefetcher may fetch up to
6 bytes beyond the last control transfer or HLT in-
struction in a code segment. :

INTEL CORP (UP/PRPHLS) L7E D WE 4826175 0126912 14T EEITLL

i n‘tel . \ 80286

In protected mode, the prefetcher will never cause a if the last byte of a code segment appears on an
segment overrun exception. The prefetcher stops at even physical memory address, the prefetcher will
the last physical memory word of the code segment. read the next physical byte of memory (perform a
Exception 13 will occur if the program attempts to word code fetch). The value of this byte is ignored
execute beyond the last full instruction in the code and any attempt to execute it causes exception 13.
segment.

BUS HOLD
|o__ BUS HOLD ACKNOWLEDGE , WHRITE CYCLE ACKNOWLEDGE
el DOV D D0y DL UV DTS SR D T P I D
cik
HOO T\ _seE MOTE 4) j] \ %
]] o
{SEE NOTE 1) (SEE NOTE 1.}
§ Sem T T T T TTTTTTIIINTTN Y T = -
An-Ag (SEE NOTE 2.)
M, e e e I R NIRRT I~ — = = = =
coorR (SEE NOTE 3)
e —— R - -~~~
I it 3‘-C vALD -
; [T <O~
NQT READY NOT READY EE NOTE 7.
i e NN r
i A N A
DELAY ENABLE (SEENOTE 7)
owTT TN -/
§ VOH
g ot/
DEN . S,
| S\
RIS H
210253-29

NOTES:

1. Status lines are not driven by B0286, yet remain high due to puilup resistors in 820284 during HOLD state.

2. Address, M/IO and COD/INTA may start floating during any T depending on when internal B0286 bus arbiter de-
cides to release bus to external HOLD. The float starts in $2 of Tc.

3. BHE and LOCK may start floating after the end of any T¢ depending on when internal 80286 bus arbiter decides to
release bus to external HOLD. The float starts in 1 of Tc.

4. The minimum HOLD to HLDA time is shown. Maximum is one Ty longer.

5. The earliest HOLD time is shown. It will always allow a subsequent memory cycle if pending is shown.

6. The minimum HOLD to HLDA time is shown. Maximum is a function of the instruction, type of bus cycle and other
machine state (i.e., Interrupts, Waits, Lock, etc.).

7. Asynchronous ready allows termination of the cycle. Synchronous ready does not signal ready in this example. Syn-
chronous ready state is ignored after ready is signaled via the asynchronous input.

Figure 29, MULTIBUS Write Terminated by Asynchronous Ready with Bus Hold

| 2.91

INTEL CORP (UP/PRPHLS)

80286

Processor Extension Transfers

The processor extension interface uses I/0 port ad-
dresses 00F8(H), O0OFA(H), and 0OFC(H) which are
part of the /0O port address range reserved by Intel.
An ESC instruction with Machine Status Word bits
EM = 0 and TS = 0 will perform |/O bus operations
to one or more of these /0 port addresses indepen-
dent of the value of IOPL and CPL.

ESC instructions with memory references enable the
CPU to accept PEREQ inputs for processor exten-
sion operand transfers. The CPU will determine the
operand starting address and read/write status of
the instruction. For each operand transfer, two or
three bus operations are performed, one word trans-
fer with 1/0O port address DOFA(H) and one or two
bus operations with memory. Three bus operations
are required for each word operand aligned on an
odd byte address.

NOTE:
Odd-aligned numerics operands should be avoided
when using an 80286 system running six or more
memory-write wait states. The 80286 can generate
an incorrect numerics address if all the following
conditions are met:

— Two floating point (FP) instructions are fetched
and in the 80286 queue.

— The first FP instruction is any floating point store
except FSTSW AX.

— The second FP instruction accesses memory.

— The operand of the first instruction is aligned on
an odd memory address.

— Six or more wait states are inserted during either
of the last two memory write (odd aligned oper-
ands are transferred as two bytes) transfers of
the first instruction.

The second FP operand's address will be incre-
mented by one if these conditions are met. These
conditions are most likely to occur in a multi-master
system. For a hardware solution, contact your local
Intel representative.

Commands to the numerics coprocessor should not
be delayed by nine or more T-states. Excessive
(nine or more) command-delays can cause the
80286 and 80287 to lose synchronization.

Interrupt Acknowledge Sequence

Figure 30 illustrates an interrupt acknowledge se-
quence performed by the 80286 in response to an

2-92

L?7E D EE 4826175 0126913 DAL ENITLIL

intgl.

INTR input. An interrupt acknowledge sequence
consists of two INTA bus operations. The first allows
a master 8259A Programmable Interrupt Controlier
(PIC) to determine which if any of its slaves should
return the interrupt vector. An eight bit vector is read
on DO-D7 of the 80286 during the second INTA bus
operation to select an interrupt handler routine from
the interrupt table.

The Master Cascade Enabie (MCE) signal of the
82C288 is used to enable the cascade address driv-
ers, during INTA bus operations (See Figure 30),
onto the local address bus for distribution to slave
interrupt controllers via the system address bus. The
80286 emits the LOCK signal (active LOW) during Tg
of the first INTA bus operation. A local bus “hold”
request will not be honored until the end of the sec-
ond iINTA bus operation.

Three idle processor clocks are provided by the
80286 between INTA bus operations to allow for the
minimum INTA to INTA time and CAS (cascade ad-
dress) out delay of the 8259A. The second INTA bus
operation must always have at least one extra T¢
state added via logic controlling READY. This is
needed to meet the 8259A minimum INTA pulse
width.

L.ocal Bus Usage Priorities

The 80286 local bus is shared among several inter-
nal units and external HOLD requests. In case of
simultaneous requests, their relative priorities are:

(Highest) Any transfers which assert LOCK either
explicitly (via the LOCK instruction prefix)
or implicitly (i.e. some segment descriptor
accesses, interrupt acknowledge se-
quence, or an XCHG with memory).

The second of the two byte bus opera-
tions required for an odd aligned word op-
erand.

- The second or third cycle of a processor
extension data transfer.

Local bus request via HOLD input.

Processor extension data operand trans-
fer via PEREQ input.

Data transfer performed by EU as part of
an instruction.

(Lowest) An instruction prefetch request from BU.
The EU will inhibit prefetching two proc-
essor clocks in advance of any data
transfers to minimize waiting by EU for a
prefetch to finish.

INTEL CORP (UP/PRPHLS)

intgl.

E7E D HEE 482L1l7?5 0126914 Ti2 EEITLIL

80286

L
1.

WNTA CYCLE 2 ———»
Ta Te ! Tc n I
LN B L B L I |

PR

[INTA CYCLE Y =

BUS CYCLE TYPE rclr.lr¢|r¢|

— EO I I A T I B 1
o
te S
10, COO INTA

(SEENOTE 2)

NOT READY READY

B i g

{SEENOTE 1) T
Bu-D _ wAvtvety p === D """"""""""" -'
ON 07-00

roor W /7T NN A NS\ 707

{SEE NOTE 1)

NOT MEADY READY

e WY

A Y A

I\

| U A

NOTES:

8. Upper data bus should not change state during this time,

1. Data is ignored, upper data bus, Dg-Dy5, should not change state during this time.

2. First INTA cycle should have at least one walt state inserted to meet'8259A minimum INTA pulse width.

3. Second INTA cycle shouid have at least one wait state inserted to meet 8259A minimum INTA pulse width,

4. LOCK is active for the first INTA cycle to prevent the bus arbiter from releasing the bus between INTA cycles in a
muiti-master system. LOCK is also active for the second INTA cycle.

5. Aga—-Ap exits 3-state OFF during $2 of the second T in the INTA cycle.

210253-31

Figure 30. Interrupt Acknowledge Sequence

Halt or Shutdown Cycles

The 80286 externally indicates halt or shutdown
conditions as a bus operation. These conditions oc-
cur due to a HLT instruction or multiple protection
exceptions while attempting to execute one instruc-
tion. A halt or shutdown bus operation is signalled
when 51, S0 and COD/INTA are LOW and M/1D is
HIGH. Ay HIGH indicates halt, and Ay LOW indi-
cates shutdown. The 82C288 bus controller does

not issue ALE, nor is READY required to terminate a
halt or shutdown bus operation.

During halt or shutdown, the 80286 may service
PEREQ or HOLD requests. A processor extension
segment overrun exception during shutdown will in-
hibit further service of PEREQ. Either NMI or RESET
will force the 80286 out of either halt or shutdown.
An INTR, if interrupts are enabled, or a processor
extension segment overrun exception will also force
the 80286 out of hait.

2-93

INTEL CORP (UP/PRPHLS) LG7E D WE 4426175 012915 959 EMITLI

[]
I n ®
Yec Yeo
™ AEN MROC MEMORY READ
2= ol up “wTC MEMORY WAITE
= - 10C 10 READ
£ CMOY owe 1o whrTE
= WTA INTERRUPT £0GE
£] ALE
, st wCE F—————
e REAGY OEM .- - - I = AQVANCEOD MEMORY
+ K orm | -4 - — i DECODE | -» AMOIOCHP SELECTS
s2C208 BUS F-44444-2 p 41 (OPTIONAL)
! COMTROLLER
\ wo |V rTTTTT- 1y t
) ;o r-4 4 b mw=?
SYNC READY ———a-| SRDY RESET 9T 3 1 rrtt—-
ENABLE ———a] SROYEN i ‘ 1 [}
ASYNC READY ~——s=f ARDY t RESET L1 | o ¢
[UL — LocK 1 P
sz : : lejcix coomm) ~ — Vi —f‘:—u DORESS Bus
1 e rEADY 1L
Yoe = ! . At > uaTen
¥ Ui s O
! fmm———— 3 b L1 BHE
HOLD
O g ——
'i ') -— HLOA CASg-2 Ao
- ERAOR
! : e — L WTR o 3 fe CH SELECT
L—__I'["'"'T __________ PEACK MTA
1y fFm—m=—=-—=— —= PEREG cap wA
)]
\ ! 1) o L "0
NEEE cru T. ssen
[y Dis - Do = K IRy -
Pyt o - Or
[1
LR R .
! w0207 !
t PROCESSON k" ---
1 EXTENSION ---
1 {OPTICHAL) |
b - -3 > DATA
L & "
210253-32

Figure 31. Basic 80286 System Configuration

SYSTEM CONFIGURATIONS

The versatile bus structure of the 80286 microsys-
tem, with a full complement of support chips, allows
flexible configuration of a wide range of systems.
The basic configuration, shown in Figure 31, is simi-
lar to an 8086 maximum modse system. It includes
the CPU plus an 8259A interrupt controiler, 82C284
clock generator, and the 82C288 Bus Controller.

As indicated by the dashed lines in Figure 31, the
ability to add processor extensions is an integral fea-
ture of 80286 microsystems. The processor exten-
sion interface allows external hardware to perform
special functions and transfer data concurrent with
CPU execution of other instructions. Full system in-
tegrity is maintained because the 80286 supsrvises
all data transfers and instruction execution for the
processor extension.

2-94

The 80287 has all the instructions and data types of
an 8087. The 80287 NPX can perform numeric cal-
culations and data transfers concurrently with CPU
program execution. Numerics code and data have
the same integrity as all other information protected
by the 80286 protection mechanism.

The 80286 can overlap chip select decoding and ad-
dress propagation during the data transfer for the
previous bus operation. This information is latched
by ALE during the middle of a Tg cycle. The latched
chip select and address information remains stable
during the bus operation while the next cycle's ad-
dress is being decoded and propagated into the sys-
tem. Decode logic can be implemented with a high
speed bipolar PROM.

The optional decode logic shown in Figure 31 takes
advantage of the overlap between address and data
of the 80286 bus cycle to generate advanced mem-
ory and IO-select signals. This minimizes system

INTEL CORP (UP/PRPHLS)

B7E D HH 4826175 012b91lbL 895 EEITL]

80286

Vee Vee
200 SYSe AESE
acn
nesET ot DN
cono
D f———
N0y t_. awars Lol MULTIBUS®
« M DA [BUS ARBITRATION
a st [o—o
ACADY COmQ fe———e
L Locn |e——
AEN -0 .—1
sLocx
BUS ARBITER
Veo
L
AN we [4 MEMORY READ
L 4l WEMORY WRITE
onc 10 AEAD
owt 10 waite
wra MTERRUPY ACKNOWLEDGE
0 aE
st uce
AEaY vew
A g <un or a
1
1 cwiLy W0
1
SYNC READY ssovr eser T = ;__
ENABLE —a-f SMOYEN oy
ASYNC AEADY ~————in] ARDY [} nESRT LR - [-]
ENABLE ——] AnOTL e [| {cue Loex prm ! O ADDRESS BUS
Yoo Qaock h Lo oy €@ mmaf-
aeneraTon | 11
¢ | s Ay i
— 30 TCH
| i <>
______ 4 —] 1n [
- ,k ~ 3 —~ed noL
e fTTTTTT"
f P -—q o cA%e, a
R G b . cs jo— ce seLECT
1 Pl “n
b — - — I_l__.l-*————--— #EACH WNTA
| - = =- = e peneC car wn
Pt T —.-1— o
[[ed
P! Vo 1 . oy I » e -
N = [
i T 1 X O Do _— L
e i r—‘: : 22984
[MTERRUPT
b CONTAOLLER
PR IR SIS L T S -
3 w2? |
! PROCESSOR Kt--- =
1 EXTENSION DR
IL_ 4 TRANS- Oara B3
________ Vv
[
DR

210253-33

Figure 32. MULTIBUS System Bus Interface

performance degradation caused by address propa-
gation and decode delays. In addition to selecting
memory and I/0, the advanced selects may be used
with configurations supporting local and system bus-
es to enable the appropriate bus interface for each
bus cycle. The COD/INTA and M/10 signals are ap-
plied to the decode logic to distinguish between in-
terrupt, 1/0, code and data bus cycles.

By adding the 82289 bus arbiter chip, the 80286 pro-
vides a MULTIBUS system bus interface as shown
in Figure 32. The ALE output of the 82C288 for the

MULTIBUS bus is connected to its CMDLY input to
delay the start of commands one system CLK as
required to meet MULTIBUS address and write data
setup times. This arrangement will add at least one
extra T state to each bus operation which uses the
MULTIBUS.

A second 82C288 bus controller and additional
latches and transceivers could be added to the local
bus of Figure 32. This configuration allows the
80286 to support an on-board bus for local memory
and peripherals, and the MULTIBUS for system bus
intertacing.

2-95

INTEL CORP (UP/PRPHLS)

GPE D EE 482LL7?5 0126917 721 EEITL)

L)
80286 | ntel
®
DATA D43 —0y § DATA ’2
Tata
otk = =
T corttion
we
[
ben
CLK FREQ
il
Y o DO C800
s2cz8s W0 140 COOM
> CLOCK |y
QENERATOR DmAM
<y VAN
o
.~
¥i 8133
w2me WEADY
o | | [lj'> > BULTIBUS® seLECT
A
ST R e ¢4 <:—- L TIeUEe
CONTROL —— COMMAND
___ﬂ———l AT, WWTS)
pecooe
]
LoCML
WLECY
BT
ADORESS Ay~ Ag, BE, TECK
210253-34

Figure 33. 80286 System Configuration with Dual-Ported Memory

Figure 33 shows the addition of dual ported dynamic
memory between the MULTIBUS system bus and
the 80286 local bus. The dual port interface is pro-
vided by the 8207 Dual Port DRAM Controller. The
8207 runs synchronously with the CPU to maximize
throughput for local memory references. it also arbi-
trates between requests from the local and system
buses and performs functions such as refresh,

initialization of RAM, and read/modify/write cycles.
The 8207 combined with the 8206 Error Checking’
and Correction memory controller provide for single
bit error comection. The dual-ported memory can be
combined with a standard MULTIBUS system bus
interface to maximize performance and protection in
multiprocessor system configurations.

Table 16. 80286 Systems Recommended Pull Up Resistor Values

80286 Pin and Name Pullup Value Purpose
4—371
5—30 20K £10% Pull 53, 57, and PEACK inactive during 80286 hold periods(1)
8—PEACK
63— FEADY 9100 £5% Pull READY inactive within required minimum time (C_ = 150 pF,
Ir < 7 mA)
NOTE:

1. Pull-up resistors are not required on 50 and 31 when the corresponding pins of the 82C284 are connected to 50 and 51.

INTEL CORP

intgl.

PACKAGE THERMAL
SPECIFICATIONS

The 80286 Microprocessor is specified for operation
when case temperature (Tc) is within the range
0°C-85°C. Case temperature, unlike ambient tem-
perature, is easily measured in any environment to
determine whether the 80286 Microprocessor is
within the specified operating range. The case tem-
perature should be measured at the center of the
top surface of the component.

The maximum ambient temperature (Ta) allowable
without violating T specifications can be calculated
from the equations shown below. T, is the 80286
junction temperature. P is the power dissipated by
the 80286.

Ty=Tc+P*o,¢

Ta=Ty—P*8a

(UP/PRPHLS)

E7E D EH 4826175 0126918 bLS EEITLY

80286

Values for 84 and 9,c are given in Table 17. 8,4 is
given at various airflows. Table 18 shows the maxi-
mum T, allowable (without exceeding T¢) at various
airflows. Note that the 80286 PLCC package has an
internal heat spreader. T can be further improved
by attaching *'fins’' or an external “heat sink™ to the
package.

Junction temperature calculations should use an lcc
value that is measured without external resistive
loads. The external resistive loads dissipate addi-
tional power external to the 80286 and not on the
die. This increases the resistor temperature, not the
die temperature. The full capacitive load (C =
100 pF) should be applied during the icc measure-
ment.

Toc=Ta+ P*8ja— 8]
Table 17. Thermal Resistances ("C/Watt) 8¢ and 6,
@44 versus Airflow — ft/min {m/sec)
Package 84c 0 200 400 600 800 1000
(0) (1.01) (2.03) (3.04) (4.06) (5.07)
68-Lead PGA 55 28 22 16 15 14 13
68-Lead PLCC 8 28 23 21 18 16 15
w/ Internal
Heat Spreader
Table 18. Maximum Tp at Various Airflows
Ta (°C) versus Airflow — ft/min (m/sec)
Package 0 200 400 600 800 1000
(0) (1.01) {2.03) (3.04) (4.06) (5.07)
68-Lead PGA 34 48 61 64 66 68
68-Lead PLCC 40 51 56 63 67 69
w/|nternal
Heat Spreader
NOTE:

The numbers in Table 18 were calculated using a Vg of 5.0V, and an I of 450 mA which is representative of the worst

case Igc at Tg = 85°C with the outputs unloaded.

2-97

INTEL CORP (UP/PRPHLS) &7 D B 482LL?5 012k919 5Ty EEITLL

a
0286
e intgl.
Typlcal Icc vs Frequency for Different Output Loads and Case Temperatures
550
525
475 = r_;i:':-—"t .
E;';E?""
E 450 E_,
8
425
400
375
350
0 2 4 6 s 10 125
FREQUENCY (MHz) 210253-51
0°C LOADED
= X 7] 09C UNLOADED
= 259C LOADED
£ 5 T7] 25°C UNLOADED
: 859C LOADED
o T I TT00) 859C UNLOADED
210253-52
NOTES:
1. Voo = 5.0V
2. Loaded: lo, = 2.0 mA, loy = —400 pA, CL = 100 pF.
Unloaded: C|_ = 100 pF.

2-.98

INTEL CORP (UP/PRPHLS)

intgl.

ABSOLUTE MAXIMUM RATINGS®
Ambient Temperature Under Bias0°Cto +70°C

Storage Temperature —65°C to+150°C
Voltage on Any Pin with

Respectto Ground.............. -1.0Vto +7V
Power Dissipation................... o000t 3.3w

L7E D W 4826175 0126920 2ibk

80286

NOTICE: This is a production data sheset. The specifi-
cations are subject to change without notice.

*WARNING: Stressing the device beyond the "Absolute
Maximum Ratings” may cause permanent darmage.
These are stress ratings only. Operation beyond the
“Operating Conditions” is not recommended and ex-
tended exposure beyond the “‘Operating Conditions”
may affact device reliability.

D.C. CHARACTERISTICS (Vo = 5V £5%, Tcase = 0°C to +85°C)*

Symbol Parameter Min Max Unit Test Condition

lec Supply Current (0°C Turn On) 600 mA (Note 1)

CeLk CLK Input Capacitance 20 pF (Note 2)

CiN Other Input Capacitance 10 pF (Note 2)

Co Input/Output Capacitance 20 pF {Note 2)
NOTES:

1. C, = 100 pF. Tested at maximum frequency without resistive loads on the outputs.
2. These are not tested. They are guaranteed by design characterization.

D.C. CHARACTERISTICS
(Vce = 5V 5%, Tgase = 0°C to +85°C)* Tested at the minimum operating frequency of the part.

Symbol Parameter Min Max Unit Test Condition

Vo Input LOW Voltage —-05 0.8 Vv

ViH Input HIGH Voltage 20 Voo +0.5 \)

ViLe CLK Input LOW Voltage —-05 0.6 v

ViHe CLK Input HIGH Voltage 38 Vee +0.5 v

Voo Output LOW Voltge 0.45 v loL = 2.0mA

VoH Qutput HIGH Voltage 24 \) loy = —400 nA

Iy input Leakage Current +10 pA 0V < VN € Vo

e Input Sustaining Current on -30 —500 pA Vin =0V

BUSY and ERROR Pins

Lo Output Leakage Current +10 RA OV < Vourt € Vee

NOTE:

*Ta is guaranteed from 0°C to +55°C as long as Tgase is not exceeded.

2-99

EITLY

INTEL CORP (UP/PRPHLS) b7?E D HEH 482L1l75 012b921 152 ENITLL

80286 i nté .

A.C. CHARACTERISTICS (Vcc = 5V 5%, Teage = 0°C to +85°C)*

AC timings are referenced to 0.8V and 2.0V points of signals as illustrated in datasheet waveforms, unless
otherwise noted.

8 MHz 10 MHz 12.5 MHz
Symbol Parameter -8 8 | -10 | -10 | <12 | -12 | Unit | Test Condition
Min | Max | Min | Max | Min | Max
1 System Clock (CLK) Period 62 | 250 | 50 | 250 | 40 | 250 | ns
System Clock (CLK) LOW Time 15 12 11 ns | at1.0v
3 System Clock (CLK) HIGH Time 25 16 13 ns | at3.6V
17 System Clock (CLK) Rise Time 10 8 —_ 8 ns { 1.0Vto 3.6V,
{Note 7)
18 System Clock (CLK) Fall Time 10 8 —_ 8 ns | 3.6Vioc 1.0v,
(Note 7)
4 Asynch. Inputs Setup Time 20 20 15 ns | (Note 1)
5 Asynch. Inputs Hold Time 20 20 15 ns | (Note 1)
6 RESET Setup Time 28 23 18 ns
7 RESET Hold Time 5 5 5 ns
8 Read Data Setup Time 10 8 5 ns
9 Read Data Hold Time 8 8 8 ns
10 READY Setup Time 38 26 22 ns
1 READY Hold Time 25 25 20 ns
12 Status/PEACK Valid Delay 1 40 | -~ | — | — | — | ns | (Notes2,3,8)
12at Status Active Delay — — 1 22 3 18 ns | (Notes 2, 3, 8)
12a2 | PEACK Active Delay — =11 22 | 3] 20 | ns | (Notes2,3,8)
12b Status/PEACK Inactive Delay —_ - 1 30 3 22 | ns | (Notes2,3,8)
13 Address Valid Delay 1 60 1 35 1 32 ns | (Notes2,3,8)
14 Write Data Valid Delay 0 50 0 30 0 30 ns | (Notes 2, 3, B)
15 Address/Status/Data Float Delay | 0 50 0 47 0 32 ns | {(Notes 2,4,7)
16 HLDA Valid Delay) 0 50 0 47 0 27 ns | (Notes 2, 3, 8)
19 Address Valid To Status 38 27 22 ns ([(Notes 3,5,6,7)
Valid Setup Time

*Ta is guaranteed from 0°C to +55°C as long as Tcagg is not exceeded.

NOTES:

1. Asynchronous inputs are INTR, NMI, HOLD, PEREQ, ERROR, and BUSY. This specification is given only for testing
purposes, to assure racognition at a specific CLK edge.

2. Delay from 1.0V on the CLK, to 0.8V or 2.0V or float on the output as appropriate for valid or floating condition.

3. Output load: G = 100 pF.

4. Float condition occurs when output current is less than I o in magnitude.

5. Delay measured from address either reaching 0.8V or 2.0V (valid) to status going active reachlng 2.0V or status going
inactive reaching 0.8V.

8. For load capacitance of 10 pF or more on STATUS/PEACK lines, subtract typically 7 ns.

7. These are not tested. They are guaranteed by design characterization.

8. Minimum output delay timings are not tested, but are guaranteed by design characterization.

2-100 I

INTEL CORP (UP/PRPHLS)

intgl.

A.C. CHARACTERISTICS (Continued)

L7E D HEH 482bL75 0l2b92e 099 MEITL]

80286

DEVICE
oUTPUT
—— .
- 210253-37
NOTE 8:
AC Test Loading on Outputs
awv
CLK INPUT
0.45v
210253-38
NOTE 9:
AC Driva and Measurement Points—CLK input
4oV
sV 38V
CLK INPUT
0.45v *
]
r'smp
24V ey
FS A 20v
OTHER .
DEVICE % S
INPUT s
/y/?/ osv
045V il
210253-39
NOTE 10: :
AC Setup, Hold and Delay Time Measurement—General

2-101

INTEL CORP (UP/PRPHLS) L7E D WW 482L175 0126923 T25 ERITLL

80286 i ntd o

WAVEFORMS
MAJOR CYCLE TIMING

READ CYCLE WRITE CYCLE
ILLUSTRATED WITH ZERQ ILLUSTRATED WITH ONE READ
WAIT STATES WAIT STATE (T, OR Tg)
8US CYCLE TYPE 3" ® Ts e Ts Te Te
Vou ™ 1 e | ezl e | ez | e | e | e ez e
o VaVaVala Valabalalale'V,
Sie50 /
o|we. m:’;;; VALID ADDRESS VALID ADDRESS W VALID IF Tg
- sl I
BRE,LOCK /1171 VALID CONTROL VALID CONTROL
@~ -
4oL %] e
Dyg=Dy s==eevecesvencase cecapmenad -4 -ee VALID WRITE DATA
VALID READ DATA
1 - @"
o %@ - ul 9 |-
READY - \}AXAEAMAMIATI RN / L == 77
L Jre
- o
SRDT+SROTEN . INAAIIARAANNRG \ 7 T A
-I@ ~ -
P sor
G| ARDY+ARDYEN I, 4 ‘t\\\ A
~{ - (]
| e NS /SIS |\
B ALE ! - /__ _\ ra

- 1B -3 E
,% it e
CMDLY A /4
- ~&
169
o1/R b
NOTE:

i:@; (SEE NOTE 1)
1. The modified timing is duse to the CMDLY signal being active.

£
4 |-

.
2-102 \ I

s2c288
5
8
[}
®
|]

L2

210253-40

INTEL CORP (UP/PRPHLS) L?E D BB 482b175 0126924 9k EEITLL

intel . : 80286

WAVEFORMS (Continued)

80286 ASYNCHRONOUS 80286 RESET INPUT TIMING AND
INPUT SIGNAL TIMING SUBSEQUENT PROCESSOR CYCLE PHASE
BUS CYCLE TYRE ;

Yen "_n—f. -
w A
e woTe 1) \ 7 ~ /
- @]
4

(O
(&Dw’!:g.p W@Z@ L
‘l‘ .

|
s 7 XK YL,

|
210253-41

21025342

NOTES:
1. PCLK indicates which processor cycle phase will occur NOTE:

on the next CLK. PCLK may not indicate the correct phase When RESET meets the satup time shown, the next CLK
until the first bus cycle is performed. will start or rapeat $2 of a processor cycle.
2. These inputs are asynchronous. The setup and hold

times shown assura recognition for testing purposes.

EXITING AND ENTERING HOLD

BUS CYCLE TYPE ™ TgOR T,] v

i L_;LJ@, a%) ‘_/‘—_/‘2_*_/
_.®
(SEE NOTE 4.)
red
T i
. —| (B}—(s€E NOTE 3.)
% foomemm o cmeamas
g ——-—;
o~
o
s P L neee S
— 3
PEACK TRANSFER '
— —! 9 (SEE NOTE 1.)
BHE.LOCK P
Azs=/ ? cemesssccsssmcecanman
230 VALID .
COD/INTA ?
(SEE NOTE 6.) —= (@ ©® (SEE NOTE 2.)
D15'DO""""“""""""""' VALID me'r[essesescccsssscccnens
— 2
.r—
0
s

210253-43

NOTES: .
1. These signals may not be driven by the 80286 during the time shown. The worst case in terms of latest float time is
shown.

2. The data bus will be driven as shown if the last cycle before T, in the diagram was a write Tc.

3. The 80286 floats its status pins during Ty, External 20 K(resistors keep these signals high {see Table 16).

4. For HOLD request set up to HLDA, refer to Figure 29.

5. BHE and LOCK are driven at this time but will not become valid until Ts.

6. The data bus will remain in 3-state OFF if a read cycle is performed.

I v 2-103

INTEL CORP (UP/PRPHLS) b?E D ME 482bL175 0l2kL925 8T8 EEITLL

80286) i nté o

WAVEFORMS (Continued)
80286 PEREQ/PEACK TIMING FOR ONE TRANSFER ONLY

BUS CYCLE TYPE

L s Te Ts Te L]
Veu 42 " 2 * " 2 # 2 *
ax '*_/'1
Va /O READ IF PROC. EXT. TO MEMORY MEMORY WRITE IF PROC. EXT. TO MEMORY
/_ MEMORY READ IF MEMORY TO PROC. zxr./— 1/0 WRITE IF MEMORY TO PROC. EXT.
$1+50

MEMORY ADDRESS IF PROC. EXT. TO MEMORY TRANSFER
1/0 PORT ADDRESS QOFA(N) IF MEMORY TO PROC. EXT. TRANSFER —

Agy-
HBTXX X
2o @B+ [*— I__1/0 PORT ADDRESS OOFA(H) IF PROC. EXT. TO MEMORY TRANSFER
— @ —

D— MEMORY ADDRESS IF MEMORY TO PROC. EXT, TRANSFER
© PEACK !L (SEE NOTE 1.)

le— (SEE NOTE 2.)

AT

7

PEREQ

T iz,

210253-44

NOTES:

1. PEACK always goes active during the first bus operation of a processor extension data operand transfer sequence. The
first bus operation will be either a memory read at operand address or 1/0 read at port address OOFA(H).

2. To prevent a second processor extension data operand transfer, the worst case maximum time (Shown above) is: 3%
@ -12apmay, ~ ® min.. The actual, configuration dependent, maximum time is: 3X @ ~12asmax ~ O min. + AX2X O.

A is the number of extra T states added to either the first or second bus operation of the processor extension data operand
transfer sequence.

INITIAL 80286 PIN STATE DURING RESET

BUS CYOLE TYPE T Ty 7y
Yen " L ” LU ” " L] "
AMHAAAAS
Yo (SEE NOTE 2)]
~®L | smwwn e W (00
et —-ﬂ gy] @ -
18 GLX PERICOS
- ~ @ |r
' “ UNKNOWN 4
FERZK
*a 18-
= 1 umonown
e
o o8-
v,
coo/TR A1 unwown Y
4@ -
Lok 1] unexows {
~ §9 | (sermotE 3.)
I I
-] @ b
WA | umosowm \

210253-45

NOTES:

1. Setup time for RESET T may be violated with the consideration that $1 of the processor clock may begin one system
CLK period later.

2. Setup and hold times for RESET | must be met for proper operation, but RESET | may occur during $1 or $2. If
RESET | occurs in ¢, the reference clock edge can be ¢ of the previous bus cycle.

3. The data bus is only guaranteed to be in 3-state OFF at the time shown.

2-104 I

INTEL CORP (UP/PRPHLS)

.
In 80286
®
BYTEY syTR2 14 1) svTae avies VTEe
7 &5 4321 076543310
LITTTTITTTTIT] vcoroun | wonowonas | sowoun § moncan |
orcooe diwimod]| reg m I ' paTA |
—————————————— o - ol - — -
memmmmmmwmm
REGISTER OPERANG/EXTENSION OF OPCOOE
O HRY MODE WITH DISPLACEMENT LENGTH
wo TE OPERATION
DIRECTION I8 TO REGISTEADINECTION 13 FAOM REGISTER
OPERATION (INSTRUCTION) CODE
A SHORT OPCODE FORMAT EXAMPLE
TR sYTE2 sYTE}) ,BYTES
7T 4 84321987 654 121 ET S 643 TR
HEARRRRRANAAI T o 1 wom 1
LONG OPCODE mod| reg | vm 1 1
——————— o o v w- w—aw ol
5. LONG OPCODE FORMAT EXAMPLE -
210253-48

Figure 35. 80286 Instruction Format Examples

80286 INSTRUCTION SET SUMMARY
instruction Timing Notes

The instruction clock counts listed below establish
the maximum execution rate of the 80286. With no
delays in bus cycles, the actual clock count of an
80286 program will average 5% more than the cal-
culated clock count, dus to instruction sequences
which execute faster than they can be fetched from
memory.

To calculate elapsed times for instruction se-
quences, multiply the sum of all instruction clock
counts, as listed in the table below, by the processor
clock period. An 8 MHz processor clock has a clock
period of 125 nanoseconds and requires an 80286
system clock (CLK input) of 16 MHz.

Instruction Clock Count Assumptions

1. The instruction has been prefetched, decoded,
and is ready for execution. Control transfer in-
struction clock counts include ail time required to
fetch, decode, and prepare the next instruction for
exacution.

2. Bus cycles do not require wait states.

3. There are no processor extension data transfer or
local bus HOLD requests.

4. No exceptions occur during instruction execution.

Instruction Set Summary Notes

Addressing displacements selected by the MOD
field are not shown. If necessary they appear after
the instruction fieids shown.

Above/below refers to unsigned value

Greater refers to positive signed value

Less refers to less positive (more negative) signed
values

ifd = 1 then to register; if d = 0 then from register

itw = 1 then word instruction; if w = 0 then byte
instruction

ifs = 0 then 16-bit immediate data form the oper-
and

its =1 then an immediate data byte is sign-ex-

tended to form the 16-bit operand
x don't care

z used for string primitives for comparison with
ZF FLAG

If two clock counts are given, the smaller refers to a
register operand and the larger refers to a memory
operand

add one clock if offset calculation requires
summing 3 elements

n = number of times repeated
m = number of bytes of code in next instruction
Level (L)—Lexical nesting level of the procedure

¢ =

2-105

b7E D WM 482b175 0L2k92k 734 ENITLY

INTEL CORP (UP/PRPHLS)

80286

The following comments describe possible excep-
tions, side effects, and allowed usage for instruc-
tions in both operating modes of the 80286.

REAL ADDRESS MODE ONLY

1.

This is a protected mode instruction. Attempted
execution in real address mode will result in an
undefined opcode exception (6).

. A segment overrun exception (13) will occur if a

word operand reference at offset FFFF(H) is at-
tempted.

. This instruction may be executed in real address

mode to initialize the CPU for protected mode.

. The IOPL and NT fields will remain 0.
. Processor extension segment overrun interrupt

(8) will occur if the operand exceeds the seg-
ment limit.

EITHER MODE

6.

7.

8.

An exception may occur, depending on the value
of the operand.

[OCK is automnatically asserted regardless of the
presence or absence of the LOCK instruction
prefix.

LOCK does not remain active between all oper-
and transters.

PROTECTED VIRTUAL ADDRESS MODE ONLY

9.

10.

A general protection exception (13) will occur if
the memory operand cannot be used due to ei-
ther a segment limit or access rights violation. if
a stack segment limit is violated, a stack seg-
ment overrun exception (12) occurs.

For segment load operations, the CPL, RPL, and
DPL must agree with privilege rules to avoid an
exception. The segment must be present to
avoid a not-present exception (11). If the SS reg-
ister is the destination, and a segment not-pres-
ent violation occurs, a stack exception (12) oc-
curs.

2-106

11.

12.

13.

14,

15.

16.

17.

18.

G?E D B 482L175 0126927 b70 MEITLL

-

intal.
All segment descriptor accesses in the GDT or
LDT made by this instruction will automahcally

assert LOCK to maintain descriptor integrity in
multiprocessor systems.

JMP, CALL, INT, RET, IRET instructions refer-
ring to ancther code segment will cause a gener-
al protection exception (13) if any privilege rule is
violated.

A general protection exception {13) occurs if
CPL # 0.

A general protection excaption (13) occurs if
CPL > IOPL.

The IF field of the flag word is not updated if CPL
> |OPL. The IOPL field is updated only if
CPL = 0.

Any violation of privilege rules as applied to the
selector operand do not cause a protection ex-
ception; rather, the instruction does not return a
result and the zero flag is cleared.

If the starting address of the memory operand
violates a segment limit, or an invalid access is
attempted, a general protection exception (13)
will occur before the ESC instruction is execut-
ed. A stack segment overrun exception (12) will
occur if the stack limit is violated by the oper-
and's starting address. If a segment limit is vio-
lated during an attempted data transfer then a
processor extension segment overrun exception
(9) occurs.

The destination of an INT, JMP, CALL, RET or
IRET instruction must be in the dsfined limit of a
code segment or a general protection exception
(13) will occur.

INTEL CORP (UP/PRPHLS)

E7E D WM 482b1l75 0126928 507 MNITLL

-
|n‘te| 80286
®
80286 INSTRUCTION SET SUMMARY
CLOCK COUNT COMMENTS
Protected Protected
FUNGTION FORMAT Resl | viwal | P | viewal
Address Address
Addresa Mode Address
Mode Mode
DATA TRANSFER
MOV = Move:
Register to Register/Memory [1000100w l modreg r/m I 23 23 2 9
Hlegister/memory 10 register [1000101w I mad reg r/m] 2,5° 25 2 9
jmmediate to register/memory [110001 1w [mod000 r/m I data I dataifw = 1 23 23 2 9
jmmediiate to register uo 11w reg r data | dataifw=1] 2 2
Memory to accumulator F 010000w | addr-low [addr-high l 5 5 2 9
Accumulator to memory [1010001w [addr-low [addr-high] 3 3 2 9
Register/ memory to segment register [106001110 I mod Oreg r/m I 25 17,19° 2 8,10,11
[Begment register to register/memaory [10001100] mod O reg r/m ' 2,3* 23 2 9
PUSH = Push:
pMemory [11111111lm110r/nﬂ 5 5* 2 9
Registor 01010 reg 3 3 2 9
000reg?10 3 3 2 9

Fogmem register

Register
ment register
CHG = Exchange:
Register/ memory with register
Register with accumulator
FN =lnput trom:
Fixed port
Variable port
DUT = OQutput to:
Fixed port

iable port
LAT = Translate byte to AL

=Load EA to register
= Load pointer to DS

8 = Load pointer to ES

—

01101080 |

[}

=

[10001111 mod000 r/m|

01011 reg
000reg111

41100001

1100000} . ..

(reg=01)

dama ’{ —

5* 5°
5 5

[1000011w|modreg 1/m a5 35"
3 |
[t110010w] por] 5 5
s | s
[1110011w] pot | 3 3
s | o
s | s
[10001101 [modreg em| 3 3
[11000101 [modreg r/m| (modw11) 7 21°
[11000100 [modreg rm] tmod=1) 7 21°

2]
2 9
2 9,10,11
=
27 7.9
14
14
14
14
9
2 8,10,11
2 9,10,11

Shaded areas indicate instructions not avaitable in 8086, 88 microsystems.

2-107

INTEL CORP (UP/PRPHLS)

80286

80286 INSTRUCTION SET SUMMARY (Continusd)

G7E D WM 4826175 0126929 443 EEITLL

CLOCK COUNT COMMENTS
FUNCTION FORMAT Real m«: Rsal m
pad P g P
Mode Mode

PATA TRANSFER (Continued)
LAHF Load AH with flags 2 2
LAHF= Store AH into flags 2 2
PUSHF = Push fiags 3 3 2 9
POPF = Pop flags 5. 5 24 8,15
ARITHMETIC
ADD = Add:
Rag/memory with ragister 10 either LOOOOOOdw [rnodlog rlm]) 27 27 2 °

diate to register/memory bOOOQDszMOOO r/m[data ldlh"lw=ﬂ 37 3,7° 2 9
Immediate to accumulator [0000010\\!1 data l dataifw=1] 3 3
ADC = Add with carry:
Reg/memory with register to either MO 100dw l mod reg rlm] -2 Ad 2,7 2 9
jmmediate to register/memory [100000sw [modmo r/m[data ldauihw-m ar 37 2 9
fmmadiate to accumulator LOOOINOW[data dataifw=1 I 3 3
iNC=lnercmnt
Register/memory [1111111!\!["\0(1000 r/m] 7 2,7* 2 9
Pogr 2 | e
BUB - Subtract:
Reg/memoary and ragister to either @1010("4 I mod reg r/m] - Ad 2,7 2 9
jmmediate from register/memory [100000sw I mod 101 r/ml data Idauluw-m] 3,7 37 2 9
jmmediate from accumulator [0010110w [data l dataifw=1] 3 3
BBB=Subtract with borrow:
Reg/memory and register to either Iﬂ 0110dw rmod reg rlm1 . 2,7 7 2 9
Immediate from register/ memory l 1000003w1mod011 r/m[data [datai!sw-m 7 3,7 2 9
Immediate from accumulator [ooot1vow] cata | damitw=1 | 3 a
DEC = Decrement
Register/memory {1111111w [mod001 r/m] 27 | a2 2 9
eoste 2 | 2
CMP =~ Compare
Register/ memory with register [0011101 w lmod reg r/;] 26° 28 2 9
Register with register/memory m 11100w lmod reg rlm] 27 2,7* 2 9
Immediate with register/memory {100000sw frmod 111 vm] daa [datatsw=01]] ae 38¢ 2 9
Immediate,with accumutator Mtrno\v[data I dataifw=1] 3 3
NEG = Change sign [1111011w [modo11 /m| 2 7 2)
AAA = ASCI| adjust for add 3 3
DAA = Decimal adjust for add 3 3

2-108

INTEL CORP (UP/PRPHLS) L?E D MR 4426175 0126930 165 EEITLL

i ntel . 80286

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS

Real Protected Real Protected
Virtuat Virtusi
Address Address
Address Mode Address
Mode Mode

FUNCTION

PRITHMETIC (Continued)

FOAMAT
AAS A5 st o subiac A

DAS = Decimal adjust for subtract 3 3

MUL = Multiply {unsigned): I 1111011 w lmod\OO r/ml

Register-Byte 13 13
Register-Word 21 21

Memory-Byte 18* 18
Memory-Word 24* 24*

rllulaln!egermulﬁply(signed): [T1 11011w]mod101 rlm]

Register-Byte
Register-Word
Memory-Byte
emory-Word

JMUL = intoger immeciate muttiply | 0110108 1 [modrog.

% €& S RPN

DIV = Divide (unsigned} r1111011w1mod110 r/m

Fegister-Byte 14 14] 6
Register-Word 2 22 6 []
Memary-Byte 17° LY Ad 28 6,9
Memory-Word 25° 25° 28 8,9
DIV = Integer divide {signed) rnﬂoﬂw anocHH r/m

Register-Byte ’ 17 17 8 6
Register-Word 25 26 [} 8
Memory-Byte 20 20* 28 8,9
Momory-Word 28 28" 28 8,9
MAM = ASCI| adjust for multiply I 110!0100100001010] 16 16

IAD = ASCII adjust for divide I 11010101r00001010| 14 14

CBW = Convert byte to word 10011000 2 2
CWD = Convert word 1o double word 10011001 2 2

LoGiC”
[Shift/Rotate Instructions:

Register/Memory by 1 [1101000w ImodTTI' v/mJ 2,7 2,7¢ 2 9
Register/Memory by CL I 1101001w [modﬂT r/m] 5+n8+n*|(5+n8+n°

rogister/Memory by Cout. 10 1 £100000w |modTTE _o/m] -~ coit . fo ingin]singen
T Instruction
000 ROL
001 ROA
010 RCL
011 RCR
100 SHUSAL
101 SHR
111 sAR

Shaded areas indicate instructions not available in 8086, 88 microsystems.

2-109

INTEL CORP (UP/PRPHLS)

G7PE D W 482L175 012b931 0Tl EEITLL

n
80286 ln
]
80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
FUNCTION FORMAT Roat | oot | ey | Proiected
Address Address
Mode Address Mode Address
Mode Mode
ARITHMETIC (Continued)
AND = And:
Reg/memory and register to either lﬂlOOOdw l modreg ~/m l 2,7 7 2 2
Immediate ta register/memory [1000000w [mod100 /m| data | cetamwet || 37° ar 2 9
Jmmediate to accumulator lio 10010w | data I dataifw=1] 3 3
TEST = And function to flags, no result:
Register/memory and register uoooo 10w I mod reg r/m_l 2,6 28" 2 9
immediate data and ragistm/hsmw I 1111011w I mod000 r/m [data l dataifw=1] 3,6 3.8* 2 -]
jmmediate data and accumuiator l 1010100w [data [dataif w=1 | 3 3
OR=0r:
Reg/memory and register to either Iﬂoo 10dw] maod reg r/rﬂ 2,7 2,7* 2 9
Jmmediate to register/memory uoooooo\n I mod00 1 r/m l data [dataifw=1 r a7 2 -]
Jmmediate to accumulator [ﬂ) 00110w I data l datai!w=T] 3 3
OR=Exclusive or:
Eeg/mmoryand register to sither [001100dw Lmod e m 27" car 2 8
ymmediate to register/memory [1000000w I mod 110 r/m I data | dataifw =1 3,7* 37 2 8
fmmediate to accumulator I 0011010w | data |data it w :] 3 3
=lnvert register/memory L1 111011w l mod010 r/m] 27° 27 2]
ING MANIPULATION:
VS = Move byte/word 5 5 2 9
MPS = Compare byte/word I 1010011w 8 8 2 9
AS = Scan byte/word 7 7 2 9
0DS = Load byte/wd to AL/AX 5 5 2 9
08 = Stor byte/wd from AL/A 3 3 2 9
ﬁs;mm/wdmuxpm | . N 4 g :
= Ouputite/ o DX pt N e
epeaated by count in CX
Vs = Move string b1110011 l 1010010ﬂ S+4n S+4n 2 8
MPS = Compare string l 11110011T1010011w] 5+9n 5+9n 28 8,9
A8 = Scan string IL11°°1Z l1010111w| 5+8n 5+8n 28 89
0DS = L 0ad string [11110011 |1o1o110w| 5+4n 5+4n 28 8.9
= Store string 11111001! I101D101w] 4+3n 4+3n 28 8,9
NS Ingut string | 11110011 [otto110w | Tgken | svan T 2] e
= Output string [s1110011 [orio1s1w] ’ﬁ-l-.la Stan 2. [T

Shaded areas indicate instructions not available in 8086, 88 microsystems.

2-110

INTEL CORP (UP/PRPHLS) G7E P WB 4826175 0l2b932 T38 EEITLI

intel . 80286

80286 INSTRUCTION SET SUMMARY (Continued) ~
CLOCK COUNT COMMENTS
Protected Protected
IFUNCTION FORMAT Real Real
Virtual Virtual
Address Address
Mode Address Address
Mode Mode
ICONTROL TRANSFER
ICALL = Cait: .
Direct within segment 51 101000 [disp-low I disp-high] 7+m 7+m 2 18
[Register/memory l 11111141 lmod010 r/ml 7+mti+m*| 7+m, t1+m* 28 89,18
Indirect within segment
[Diract intersegment ITOM 1010 l segment oftset J 13+m 26+m 2 11,12,18
[Protected Mode Only (Direct Intersegment): f segment selector |
Via call gate to same privilega level 41+m 8,11,12,18
Via call gate to ditferent privilege level, no parameters 82+m 8,11,12,18
Via call gate to different privilege level, x paramaeters 88 +4x+m 8,11,12,18
ViaTSS 177+m 8,11,12,18
Via task gate . 182+m 8,11,12,18
Indirect intersegment F1 111111 [mod01 1 r/mJ (mod+11) 16+m 28+m* 2 8,9,11,12,18
Protectad Mode Only (Indirect intersegment):
Via call gate to same privilege level 444+m* 8,9,11,12,18
Via call gate to different privilega level, no parameters 83 +m* 8,9,11,12,18
Via calil gate io different privilega level, x parameters 80+4x +m* 8,9,11,12,18
Via TSS 180+m* B,9,11,12,18
Via task gate 185+m* 8,9,11,12,18
MMP = Unconditional jJump:
[Short/long I 11101011 I disp-low l 7+m 7+m 18
Direct within segment r111o1oo1 l disp-low [disp-high I 7+m 7+m 18
Register/ memory indirect within segment [111111114 lmod100 r/m] 74+mii+mt | 7+m 11+m* 2 9,18
Direct intersegment F‘l 101010 l segment offsat J 11+m 23+m 11,12,18
iProtected Mode Only (Direct intersagment): [sagment selector J
" Via call gate to same privilege level : 38+m 8,11,12,18
Via TSS 175+m ' 8,11,12,18
Via task gate 180+m 8,11,12,18
indirect intersegment I 11111113 [mod 101 /m| (mod#11) 15+m* 26+m* 2 8,9,11,12,18
[Protected Mode Only (Indirect intersegmenty
Via call gate to same privilege level 41+m* 8,9,11,12,18
ViaTSS 178+m* 8,9,11,12,18
Via task gate 183+ m* 8,9,11,12,18

[RET = Rsturn from CALL:

IWithin segment 11000011 ' 11+m 11+m 2 88,18

[Within seg adding immed to SP Wl 000010 [data-low I data-high J 11+m 11+m 2 8,8,18
Intersagment 15+m 25+m 2 8,9,11,12,18
{ g’ adding i diate to SP ﬁ‘ 001010 I data-low I data-high J 15+m 2 88,11,12,18
Protected Mode Only (RETX

To different privilege lavel 55+m 9,11,12,18

2111

INTEL CORP (UP/PRPHLS) L7E D W 4B82L1L7?5 0126933 974 EEITLY

80286 , in‘l‘el R

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT COMMENTS
FUNCTION FORMAT : A::.l“ m’d A::"“ "::MM
Mode Address Mode Address
Mode Mode
CONTROL TRANSFER (Continued)
JE/JT = Jump on equal zero r011‘0100 l disp] 7+mord 74+mor3 1
- [L/INGE = Jump on less/not greater or oqual [THHHOO I disp | 7+mord 7+mor3 18
JLE/ING = Jump on less or equal/notgreater | 01111110 | dsp | 7+mor3 | 7+mor3 |
JB/JINAE = Jump on below/not above or aqual rotnooxo [disp] 7+mor3 7+mor3 10
JBE/JNA = Jump on below or equal/not above r01110110 [disp J 7+mord 7+mord 18
JP/JPE = Jump on parity/parity even [o1111010] ase | 7+mord | 7+mor3 18
JO = Jump on overflow [01110000 [disp J 7+mor3 7+mor3 18
J8 = Jump on sign IT)HHOOO [disp] T+mord | 7+mor3 18
JINE/INZ = Jump on nat equal/not zerd [or110101 [asp | 7+mor3 | 7+mor3 18
JNL/JGE = Jump on not less/greater or equal l 01111101 L disp I 7+mord | 7+mor3 18
JNLE/JG = Jump on not less or equal/greater 5‘111111 [disp] 7+mord T+mor3 18
JNB/JAE = Jump on not below/above or equal r01110011] disp] 7+mor3 T+mor3 18
JNBE/JA = Jump on not betow or equal/above [01110111 I disp l T+mor3 T+mor3 18
INP/JPO = Jump on not par/par odd [o1111011] am | 7+mord | 7+mora 1
JNQ = Jump on not overflow [01110001 I disp I T+moe3 7+mor3 1
JNS = Jump on not sign ﬁnnom I disp] 7+mor§ T+mor3 18
LOOP = Loop CX times m‘IOOO‘lD L disp] 8+mord | 8+mor4 19
1OOPZ/LOOPE = Loop while zera/equal l 11100001 I disp J B+mord 8+mord 18
LOOPNZ/LOOPNE = Loop while not zero/equal L1 1100000 l disp] 8+mord 8+mord 18
JCXZ = Jump on CX zero [71100011 I disp]
ENTER = Entor Proceds. 11001000 | demiow | dsangh [¢ J
L=t L
o>q o ‘
RAVE ~ Losve Procears :
INT = interrupt: ‘
Type spacifiad [11001101 [tpe | 23+m 278
Type3 2B+m 278
INTO = InterTupt on overfiow 24 +mor3 268
@itno 3itno
interrupt) interrupt)

Shaded areas indicate instructions not available in 8086, 88 microsystems.

2-112

INTEL CORP (UP/PRPHLS)

G7E D NN 482LL7?5 0126934 400 MEITLL

-
l ntel 80286
®
80286 INSTRUCTION SET SUMMARY (Continued)
CLOCK COUNT COMMENTS
Protected Protected
FUNCTION FORMAT Real Virtual Real Virtust
Address Address
Mode Address Address
Mode Mode
ICONTROL TRANSFER (Continued)
Protected Mode Only:
Via interrupt or trap gate to same privilege fevel 40+ m 7.8,11,12,18
Viainterrupt or trap gate to fit different privilege level 78+ m 7,811,12,18
Via Task Gate 167 +~m 7.811,12,18
“RETxlntenupt ratum 17+m 31+ m 2,4 8,9,11,12,1518

Protected Mode Only:
To differant privilege levet
To different task (NT=1)

POUND = Dstact value out ot range

“[e1100010 [modreg vm}

PROCESSOR CONTROL

ICLC =Clear carry 11111000
CMC = Comptement carry 11110101
b’TC=Set carry

CLD = Clear direction

[BTD = Set direction 11111101

ICLI = Clear interrupt

= Set interrupt

10011011

QCK = Bus lock prefix 11110000

= Cloar task switched flag 00001111] 00000110 -

—

= Processor Extension Escape 11011TTT LmodLLL r/m]

E
]
.
E
:
g

G = Segment Override Prefix 001 reg 110

CTION CONTROL

8,9,11,12,15,18
8,9,11,12,18

089,11,12,18

2 2
2 2
2 2
2 2
2 2
3 3 14
2 2 14
2 2 13
3 3

= Load global descriptor tabls register | 00001111 | 00000001 |mad010 r/m)
= Stors giobel descriptor table reglster | 00001111 | 00000001 |mod000 _r/m| e e 23 v
= Load interrupt descriptor table register | 00001111 | 00000001 |mod0t1 wml | 12° 12+ 23 813
»Stors interrupt doscriptor table register | 00001111 | 00060001 |mod0at r/mf | 120 1ze 28 s
= Load local descriptor table register : . :
from ragister memory 00001111 00000000 [mod010 wm 7,19 ' sits
= Store local descriptor table register ' ;
1o register/ mamory focoot111] 00000000 [medn0s wm| 23 ' Y
Shaded areas indicate instructions not available in 8086, 88 microsystems.
2-113

INTEL CORP (UP/PRPHLS) LG7E D EE 482b175 0126935 747 EEITLL

80286 | i nte] .

80286 INSTRUCTION SET SUMMARY (Continued)

CLOCK COUNT
Protected
FUNCTION FORMAT Resi Virtuai
Address
Mode Address
- Mode
LTR = Locs! task register . o o &
fomregstor/memory .. [00041111 | 00000000 | mog0i1 um] }
STR = Store task register)) K .

wregstarmemory - - [To0a1111]| 50000006 | meso01 wm] 5
LMSW — Load machine status word e RRREE LR R e
fomregister/memary . | 90001111 | 60000001 Imod110 rm|

‘suswtswremm\estamm“ . [00001111 | 00000001 [modr00 vm] s

- fromregister/memory | 000ot111 | 00000010 [modreg wm] | G F e |
181 =Load segment fimit e 7 SR N R
| tomregister/memory . - . [00001111 | 00000011 [modreg mm} | | osaser

ARPL = Adiustrequested piviiegeevel - . . - ... | 01100011 | modreg rrm | | | tonee
from register/memory RSN .. o o : T

VERR = Varty road access: register/memory | 00001111 | 00000000 | moa100mm | | o] taaer

VERR-Vertywiteaccess: | 00001111 | 00000000 [meatorem } | 0 | ﬂjmri"*‘

Shaded areas indicate instructions not avaitable in 8086, 88 microsystems.

2-114 |

INTEL CORP (UP/PRPHLS)

intgl.

Footnotes

The Effective Address (EA) of the memory operand
is computed according to the mod and r/m fields:

if mod = 11 then r/m.is treated as a REG field

it mod = 00 then DISP = 0*, disp-low and disp-high
are absent

if mod = 01 then DISP = disp-low sign-extended to
16 bits, disp-high is absent

if mod = 10 then DISP = disp-high: disp-low

if /m = 000 then EA = (BX) + (Sl) + DISP
if //m = 001 then EA = (BX) + (DI) + DISP

if r/m = 010 then EA = (BP) + (SI) + DISP
if /m = 011 then EA = (BP) + (D) + DISP
if /m = 100 then EA = (Si) + DISP

it r/m = 101 then EA = (Dl) + DISP

if /m = 110 then EA = (BP) + DISP*

if /m = 111 then EA = (BX) + DISP

DISP follows 2nd byte of instruction (before data if
required)
*except if mod = 00 and r/m = 110 then EQ = disp-high: disp-low.

SEGMENT OVERRIDE PREFIX

001rmeg110

reg is assigned according to the following:

Segment
reg Register
00 ES
01 Cs
10 SS
1" bDC

80286

REG is assigned according to the following table:

16-Bit (w = 1) 8-Bit (w = 0)
000 AX 000 AL
001 CX , 001 CL
010 DX 010 DL
01t BX 011 BL
100 SP 100 AH
101 BP 101 CH
110 SI 110 DH
111 DI 111 BH

The physical addresses of alt operands addressed
by the BP register are computed using the SS seg-
ment register. The physical addresses of the desti-
nation operands of the string primitive operations
(those addressed by the DI register) are computed
using the ES segment, which may not be overridden.

DATA SHEET REVISION REVIEW

The following differences exist between this data

sheet (210253-017) and the previous version

(210253-016);

1. References to the 68-pin LCC (Leadless Chip
Carrier) package have been removed.

2. References to the 12ICE-286 support tool have
been removed.

The following list represents key differences be-

tween the -016 and the -015 versions of this data

sheet. Please review this summary carefully.

1. Removed Input CLK, RESET Leakage Current
{l.cr) specs.

2. Updated output leakage current (I o) specs.

The following list represents key differences be-
tween the -015 and the -014 versions of this data
sheet. Please review this summary carefully.

1. Removed the Range of Clock Rates bullet.

2. The maximum ambient tempsrature (T) vs Vari-
ous Airflows Table has been updated.

3. Removed the maximum values of System Clock
(CLK) LOW period (t5) of 8 MHz, 10 MHz, and
12.5 MHz parts in the A.C. Characteristics table.

4. Removed the maximum values of System Clock
(CLK) HIGH period (t3) of 8 MHz, 10 MHz, and
12.5 MHz parts in the A.C. Characteristics table.

5. Deleted the 82C284 and 82C288 A.C. Character-
istics tables.

2-115

L7E D EE 482L175 012693bL LA3 EEITLL

